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ABSTRACT 

 

MACHINE LEARNING-BASED APPROACH FOR BIAS CORRECTION 

OF SATELLITE-BASED PRECIPITATION PRODUCTS USING 

ENVIRONMENTAL PARAMETERS AND GROUND TRUTH DATA IN 

TURKIYE 

 

 

 

Sevinç, Gökhan 

Master of Science, Geological Engineering 

Supervisor: Assoc. Prof. Koray Kamil Yılmaz 

 

 

September 2024, 108 pages 

Satellite precipitation data are very important in hydrological studies, but contain 

bias. In this study, XGBoost and Random Forest machine learning algorithms are 

used to correct the bias with ground observations and environmental parameters 

such as distance to the coast and elevation.  

The machine learning models were trained daily from 2015 to 2022 with optimal 

hyperparameters to obtain the most accurate and robust results and results are 

filtered to be more representative on rainy days. Although machine learning models 

are generally considered as black box, SHAP values were utilized in this study in 

an effort to explain and interpret their behavior by showing the contribution of each 

feature to the model prediction and how these contributions change as a function of 

space and time. 

The performance of the models was examined using different metrics to clearly 

explain their strengths and weaknesses. Average RMSE scores of filtered IMERG 

(7.08), Random Forest (4.00), and XGBoost (4.33) showing machine learning 

models provide a much more accurate prediction because they reduce the average 

RMSE of filtered IMERG by about 3 mm/day. Average KGE scores of filtered 

IMERG (-0.28), Random Forest (0.46) and XGBoost (0.47) and their positive 
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improvements of KGE values indicating machine learning models perform better in 

capturing precipitation variability and accuracy of predictions. The Average Mean 

Bias Error scores of filtered IMERG (0.197) indicates, overestimation of 

observations, while Random Forest (-0.068) and XGBoost (-0.071) models slightly 

underestimate the observed values. These results shows that the accuracy and 

reliability of the prediction performance are improved. It was found that XGBoost 

models are better to capture variability in data and predicting extreme precipitation 

events (10 mm/day or higher events). Random forest is better at predicting lower 

threshold events such as 1 mm/day and 2 mm/day. 

The overall behavior of the models is visualized by merging their daily SHAP 

values. Machine learning models are consistent with their feature importance 

scores (FI) each year and adapt their behavior seasonally. The SHAP analysis 

further emphasizes that the models successfully capture the aridity over the 

Mediterranean and Central Anatolian regions by providing low summer 

precipitation at these latitudes, while positive SHAP values at higher latitudes in 

summer translate into increased precipitation in the Black Sea region. The clear 

positive correlation of precipitation with elevation is evident in the models, while 

the effect of distance from the coast in summer is minimal due to generally dry 

climatic conditions. The SHAP analysis also shows that the models capture the 

high winter precipitation in the Mediterranean and Black Sea regions, as well as the 

dry conditions of the Central Anatolian Plateau.  In addition, the models show a 

strong seasonal influence of the distance to coast feature on precipitation, with a 

superior ability to capture coastal precipitation in winter, demonstrating their 

ability to adapt to seasonality. 

 

Keywords: Satellite-based Precipitation, Bias Correction, Machine Learning, 

SHAP, Explainable AI



 

 

vii 

 

ÖZ 

 

TÜRKİYE'DE ÇEVRESEL PARAMETRELER VE YER GERÇEĞİ 

VERİLERİ KULLANILARAK UYDU TABANLI YAĞIŞ ÜRÜNLERİNİN 

HATA DÜZELTMESİ İÇİN MAKİNE ÖĞRENME TABANLI YAKLAŞIM 

 

 

 

Sevinç, Gökhan 

Yüksek Lisans, Jeoloji Mühendisliği 

Tez Yöneticisi: Doç. Dr. Koray Kamil Yılmaz 

 

 

Eylül 2024, 108 sayfa 

 

Uydu yağış verileri hidrolojik çalışmalar için çok önemli olmakla birlikte hatalar 

içermektedir. Bu çalışmada, XGBoost ve Random Forest makine öğrenimi 

algoritmaları, yer gözlemleri ve kıyıya uzaklık, yükseklik gibi çevresel 

parametreleri hata düzeltmek için kullanılmaktadır.  

Makine öğrenimi modelleri, en doğru ve sağlam sonuçları elde etmek için optimum 

hiperparametrelerle 2015'ten 2022'ye kadar günlük olarak eğitilmiştir ve sonuçlar 

yağmurlu günlerde daha temsili olacak şekilde filtrelenmiştir.  Makine öğrenimi 

modelleri genellikle kara kutu olarak kabul edilse de, her bir özelliğin model 

tahminine katkısını açıklamak ve yorumlamak amacıyla bu çalışmada SHAP 

değerleri kullanılmıştır. 

Modellerin performansı, güçlü ve zayıf yönlerini net bir şekilde açıklamak için 

farklı metrikler kullanılarak incelenmiştir. Filtrelenmiş IMERG (7,08), Rastgele 

Orman (4,00) ve XGBoost'un (4,33) ortalama RMSE puanları,  filtrelenmiş 

IMERG'in ortalama hatasını yaklaşık 3 mm/gün azalttıkları için makine öğrenimi 

modellerinin çok daha doğru bir tahmin sağladığını göstermektedir. filtrelenmiş 
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IMERG (-0,28), Random Forest (0,46) ve XGBoost'un (0,47) ortalama KGE 

puanları ve KGE değerlerindeki olumlu gelişmeler, makine öğrenimi modellerinin 

yağış değişkenliğini ve tahminlerin doğruluğunu yakalamada daha iyi genel 

performans gösterdiğini ortaya koymaktadır. Filtrelenmiş IMERG (1.578), Random 

Forest (-0.068) ve XGBoost'un (-0.071) Ortalama Bias Hataları filtrelenmiş 

IMERG'nin Ortalama Bias Hatası (0.197) tahminlerini daha yüksek belirttiğine 

işaret etmektedir. Rastgele Orman (-0,068) ve XGBoost (-0,071) modelleri 

gözlenen değerleri biraz daha düşük tahmin etmektedir, bu da tahmin 

performansının doğruluğu ve güvenilirliğinin arttığı anlamına gelmektedir. 

XGBoost modelleri, verilerdeki değişkenliği yakalamada ve aşırı yağış olaylarını 

(10 mm/gün veya daha yüksek olaylar) tahmin etmede daha iyidir. Rastgele orman, 

1 mm/gün ve 2 mm/gün gibi daha düşük eşik olaylarını tahmin etmede daha iyidir. 

Modellerin genel davranışı, günlük SHAP değerleri birleştirilerek 

görselleştirilmiştir. Makine öğrenimi modelleri her yıl özellik önem puanları (FI) 

ile tutarlıdır ve davranışlarını mevsimsel olarak düzenlerler.SHAP analizi ayrıca, 

modellerin Akdeniz ve İç Anadolu bölgelerindeki kuraklığı, bu enlemlerde düşük 

yaz yağışları sağlayarak başarılı bir şekilde yakaladığını, yaz aylarında daha yüksek 

enlemlerde pozitif SHAP değerlerinin Karadeniz bölgesinde artan yağışlara 

dönüştüğünü vurgulamaktadır. Yağışın yükseklikle pozitif korelasyonu modellerde 

açıkça görülürken, yaz aylarında kıyıdan uzaklığın etkisi genel olarak kuru iklim 

koşulları nedeniyle minimum düzeydedir. SHAP analizi ayrıca modellerin Akdeniz 

ve Karadeniz bölgelerindeki yüksek kış yağışlarının yanı sıra Orta Anadolu 

Platosu'nun kuru koşullarını da yakaladığını göstermektedir.  Buna ek olarak, 

modeller, kıyıya uzaklık özelliğinin yağış üzerinde güçlü bir mevsimsel etkisi 

olduğunu ve kış aylarında kıyı yağışlarını yakalamada üstün bir kabiliyete sahip 

olduklarını göstererek mevsimselliğe uyum sağlama yeteneklerini ortaya 

koymaktadır. 

Anahtar Kelimeler: Uydu Tabanlı Yağış, Hata Düzeltme, Makine Öğrenimi, 

SHAP, Açıklanabilir Yapay Zeka
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CHAPTER 1  

1 INTRODUCTION 

The aim of this chapter is to introduce the general importance of precipitation and 

to inform the reader about the precipitation products and the bias correction to 

highlight the background of bias correction of satellite precipitation products with 

environmental parameters and ground observations. The importance and objectives 

of this study are also given in this chapter. 

1.1 Precipitation: Measurement and Applications 

Precipitation plays a critical role in the climate system and the water cycle (Kidd 

and Huffman, 2011).Precipitation datasets are playing a vital role in the evaluation 

of flood risks, conditions of drought, and also the availability of water resources-a 

matter concerning both urban and rural areas (Hui-Mean et al., 2018; Kidd et al., 

2009; Thornes et al., 2010; Kidd and Huffman, 2011; Zhou et al., 2022).Measuring 

precipitation with high precision is indeed a difficult task, as it is a very complex 

process and interacts with so many other parameters. Precipitation has spatio-

temporal heterogeneities that make estimations challenging, due to their variability 

in space and time and environmental factors like elevation (Kucera et al., 2013; 

Herold et al., 2016). However, despite all these difficulties, the accuracy of 

precipitation data is really important from the point of view of disciplines like 

hydrology, hydrogeology, climate science, and meteorology (Hobbs, 1989; Ren et 

al., 2021). 

Various methods are used to estimate precipitation, including gauges, radars and 

satellites, all of which have their advantages and limitations. It is clear that direct 
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point-scale measurements obtained from ground-based observations are limited in 

capturing spatial variability (He et al., 2023; Zeng et al., 2018b), while radar and 

satellite data are indirect and have their own limitations in terms of accuracy (Derin 

and Yilmaz, 2014). As a result, there is increasing interest in algorithms that would 

optimally normalize data from these different sources (Zeng et al., 2021; Wang et 

al., 2020). Machine learning algorithms have emerged as effective tools to improve 

rainfall estimation and prediction (Aghelpour et al., 2020; Guan et al., 2020; 

Mohammadi et al., 2021; Hadadi et al., 2022).Some of the recent works apply tree-

based AI algorithms that synthesize ground-based observations with environmental 

parameters and satellite-collected precipitation data into enhanced precipitation 

fields, incorporating strengths in direct precipitation measurements, spatial 

coverage and environmental controls (Başağoğlu et al., 2022; Chakraborty et al., 

2021a; Chang et al., 2016; Dumitrescu et al., 2021). Among other things, quality 

control and correction of data processing bias are essential steps for these datasets. 

In this regard, machine learning algorithms that can handle complex, linear and 

nonlinear relationships have shown great potential to improve the accuracy of 

precipitation product production (Chivers et al., 2020; Abualigah et al., 2021; 

Zhang et al., 2021; Agushaka et al., 2022; Oyelade et al., 2022). 

1.1.1 Precipitation Products 

In the recent years, with the advance in the technology of remote-sensing, 

especially with the advances of weather radars and satellites, quantitative 

precipitation assessment has become significantly improved (Tang et al., 2020; Shi 

et al., 2020). Satellite precipitation products (SPPs) and radar products offer data 

with indirect measurement, hence with inherent bias. Radar precipitation products 

have higher spatial and temporal resolution within a limited radius and have 

improved significantly over the last decades, typically to 1 km and 5 min 

(Overeem, Holleman, & Buishand, 2009; Serafin & Wilson, 2000).However, radars 

have limited coverage and constructing a homogeneous radar field by combining 
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neighboring radars is challenging due to several factors, including inter-radar 

calibration differences (Patakchi et al., 2023), and they do not have global coverage 

(Li et al., 2021a). On the other hand, satellites provide quasi-global coverage and 

provide consistent measurements of precipitation across the globe in space and 

time (Derin and Yilmaz, 2014).The resolution of satellite-based products varies 

depending on the product, for example, the IMERG Late product provides 

precipitation with a spatial resolution of 0.1° × 0.1° and a temporal resolution of 30 

min (Huffman., 2019; Huffman et al., 2018).The value of SPPs lies in their ability 

to very accurately identify broader patterns and trends in weather.  

Satellite precipitation products (SPPs) are effective for monitoring global 

precipitation, but they provide reduced accuracy at the local scale. They are 

essential for regional and global monitoring of precipitation and flood warning, 

especially for developing countries where lack of detailed precipitation data is an 

issue (Setiawati and Miura, 2016; Hossain and Lettenmaier, 2006). There is an 

absolute need for these products for regional and global tracking of precipitation. 

SPPs are useful for hydrological research in areas where gauge networks are 

inadequate (Xue et al., 2013; Saouabe et al., 2020). Despite their promising 

application potential, SPPs usually have many shortcomings in providing accurate 

data on hydrology and water resource management at the basin scale (Yong et al., 

2010; Zhou et al., 2022). The strength of SPPs lies in the highly accurate 

representation of the spatial distribution of precipitation; however, the ability to 

capture fine-scale features and small-scale variability in local rainfall intensity is 

limited (Mastrantonas et al., 2019; Zhou et al., 2022). Robust calibration and bias 

correction based on ground observations are essential to improve the accuracy of 

the SPP. However, bias correction reveals the limitations of these SPPs to 

accurately describe precipitation at the local scale. 
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1.1.1.1 Accuracy of Rain Gauges 

Rain gauges are instruments used to quantify the amount of precipitation at a 

specific location. The most common method of ground-based precipitation 

measurement is the use of rain gauges to estimate punctual precipitation at a single 

location (New et al., 2001).  These instruments are mainly located outdoors and 

either collect precipitation in a container or use a tipping bucket mechanism to 

measure precipitation intensity. Precipitation observations from rain gauges are 

characterized by exceptional accuracy at the point scale. At the regional scale, the 

accuracy of ground stations is compromised by the limited distribution and density 

of stations (He et al., 2023; Zeng et al., 2018b). Precipitation is a meteorological 

process and the spatial and temporal distribution of precipitation can vary 

considerably (Marani, 2005). The complexity of the topography can also influence 

this phenomenon. Insufficient distribution of rain gauges hinders the ability to 

spatially represent precipitation. Rain gauges provide detailed measurements of 

precipitation at the point scale (New et al., 2001). Gauges provide ground point 

measurements that promote site validation and bias correction of SPPs (Yang et al., 

2016; Tapiador et al., 2020; Zhou et al., 2022; Tian and Peters-Lidard, 2010). 

1.1.1.2 Errors in Rain Gauges 

The rainfall measurement using rain gauges is prone to many types of errors, 

affecting both meteorological factors and the actual design of the gauges 

themselves. Meteorological conditions such as evaporation, temperature variability, 

air turbulence, and wind have been reported to seriously affect the accuracy of 

rainfall capture (Robinson and Rodda, 1969; Constantinescu et al., 2007; Sieck et 

al., 2007). Also, the type of design of the rain gauge used is critical in measurement 

accuracy since some gauges are not designed to capture all forms of precipitation 

with equal effect. It is also subjected to bias from air turbulence, flow deflection 

and wind effects that may cause smaller raindrops to miss the gauge or be tilted 
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hence introducing inaccuracies. As each rain gauge measurement contains some 

uncertainty due to speed, raindrop size, and finally the design of the gauge itself 

(Mueller and Kidder, 1972; Neff, 1977; Folland, 1988; Hanna, 1995; Nešpor and 

Sevruk, 1999; Chang and Harrison, 2005, Sieck et al., 2007).  

Regionally, the accuracy of gauges is reduced due to limitations in distribution and 

density (He et al., 20-23; Zeng et al., 2018b). In regions with sparse gauge 

distribution, a single gauge often represents thousands or even tens of thousands of 

square kilometers (Ibrahim et al., 2015, Zhou et al., 2022). Poor observation 

networks affect the quality of rain gauge data. The estimation of precipitation 

distribution using a network of ground observations is also limited for the same 

reasons (He et al., 2023; Zeng et al., 2018b; Wang et al., 2021). 

The improvement in the reliability of gauge data will include the elimination and 

correction of the uncertainties related to rain gauge measurements. Further, the 

errors can be minimized using the correction factors that consider the various 

meteorological variables, such as wind velocity, temperature, and precipitation 

intensity and type (Stisen et al., 2012; Hoffmann et al., 2016).  The use of a number 

of rain gauges in the same area increases the knowledge of the local precipitation 

since the precipitation is determined by complicated environmental factors such as 

elevation. 

1.1.1.3 Satellite Precipitation Products 

Satellite-based products can be considered as an alternative to ground-based 

observations for precipitation data. Over the last three decades, satellite data have 

become a valuable tool for global precipitation monitoring (Levizzani and Cattani, 

2019). Various versions of satellite-based precipitation products have been 

developed and improved (e.g: Adler et al. 2003; Ashouri et al. 2015; Hong et al. 

2004; Hsu et al. 1997; Hsu et al. 1999; Huffman, 2019; Huffman et al. 2018; 

Huffman et al. 2010; Huffman et al. 2007). They provide globally consistent 
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measurements of precipitation in space and time with quasi-global coverage (Derin 

and Yilmaz, 2014). Several researchers have compared satellite precipitation 

products and found that multi-sensor ensemble products provide the highest quality 

data (Beck et al., 2020; Derin and Yilmaz, 2014; Gehne et al., 2016; Sun et al., 

2014; Sun et al., 2018a; Zeng et al., 2018; Zhu et al., 2015). Precipitation patterns 

are easier to understand in SPPs, showing various precipitation characteristics like 

amount, probability, and type. Satellites provide very important data on 

precipitation, particularly at high altitude areas (Derin and Yilmaz, 2014) where 

access to gauges is very poor. Their coverage is high in space, but SPPs can 

perform near real-time monitoring; often, they do not resolve correctly the intensity 

of precipitation at the local scale (Mastrantonas et al., 2019; Zhou et al., 2022). 

These are the uncertainties in sampling, indirect observation errors, difficulties in 

estimating precipitation intensity, especially in regions of complex topography and 

convective systems (Lo Conti et al., 2014; Zhou et al., 2022). Despite many 

advantages offered by SPPs, the systematic mistakes are being made in the cases of 

lack of ground-based measurements as references (Yang et al., 2016), making them 

not sufficient to serve the general purposes of hydrology and water resources 

(Yong et al., 2010; Zhou et al., 2022).  

1.1.1.4 Bias Corrections of Satellite Precipitation Products 

SPPs normally exhibit bias and errors over areas of complex topography and 

diversified climates. This was pointed out by several studies such as: Chaudhary 

and Dhanya (2019), Kidd and Huffman (2011), Prakash et al. (2015, 2016), Tang et 

al. (2015), Tian et al. (2009), Xu et al. (2017). Such inaccuracies in precipitation 

estimation can also lead to errors in the precise distribution of precipitation over 

different areas (Mastrantonas et al., 2019; Zhou et al., 2022). Bias correction is 

applied as part of the process of tuning the satellite data to better match the gauge 

observations, thus improving the accuracy and reliability of the SPPs. Various bias 

correction methods exist (Maraun, 2016) and have been practiced to improve the 
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quality of SPP data. The simple scaling method is one of the common approaches 

(Boushaki et al., 2009; Lin and Wang, 2011; Tesfagiorgis et al., 2011; Vila et al., 

2009). This approach follows additive or multiplicative bias factors to reduce the 

discrepancy between the satellite estimates and the reference data, hence enhancing 

the quality of SPPs. (Yang et al., 2016). Bias correction is quite vital for any sort of 

accurate climate prediction and reliable hydrological data (Yong et al., 2010; Zhou 

et al., 2022, Chaudhary and Dhanya, 2019). 

The combination of SPPs with ground gauge observations is fundamental to 

complement each other (Rasmy et al., 2014; Zhou et al., 2022). Indirect 

applications of satellite sensors can introduce errors. Direct measurements of 

precipitation at a specific point can be used to detect and reduce these errors. In 

many cases, the accuracy of SPPs increases significantly when combined with 

gauged observations (Tapiador et al., 2020; Zhou et al., 2022). To illustrate, in one 

study, calibration of IMERG products with assimilation of ground observations can 

reduce errors by 47%-63% in the US (Tian and Peters-Lidard, 2010). 

Improvements in precipitation accuracy are common (Akinyemi et al., 2020; Chen 

et al., 2021; Jafarpour et al., 2022; Jiang et al., 2021; Yu et al., 2020; Zhang et al., 

2022). However, studies considering the effects of complex topography on 

precipitation are much less (Amjad et al., 2020; Lei et al., 2021; Ward et al., 2011; 

Yu L.et al., 2020). 

Over these years, progress has been excellent in meteorological satellites and 

satellite-based quantitative precipitation estimation (QPE) technologies (Tang et 

al., 2015; Yang et al., 2018; Zheng et al., 2021). As a matter of fact, the integration 

of SPPs into ground observations enhances their reliability and continuity in space. 

This study combines ground observations with environmental data through a 

machine learning approach to IMERG satellite data, focusing bias correction over 

highly variable topography in Turkiye. This represents the first daily precipitation 

study using ancillary environmental features in a bias correction framework 

supported by an explainable artificial intelligence with SHAP. 
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1.2 Importance of Study 

1.2.1 Goals and Motivation of the Study 

SPPs, though presenting high spatial resolution, are not as widely applied in 

hydrology and water resources due to their relatively lower accuracy in terms of 

representing the spatial distribution of precipitation (Yong et al., 2010; Zhou et al., 

2022; Mastrantonas et al., 2019). In contrast, the well-documented good point-scale 

accuracy of the gauge data (He et al., 2023; Zeng et al., 2018b) increases the spatial 

reliability when integrated into the SPPs. Many previous types of studies have 

estimated the output performance of model and satellite-based products only for 

complex topography (e.g., Derin et al., 2016; Derin and Yilmaz, 2014; Gampe and 

Ludwig, 2017; Hobouchian et al., 2017; Mei et al., 2014; Xu et al., 2017). Several 

studies focused on complex and non-complex topographic features simultaneously 

(e.g. Beck et al., 2019; El Kenawy et al., 2015; Mayor et al., 2017; Sharifi et al., 

2016). Some of the previously mentioned studies (e.g., Derin and Yilmaz, 2014; 

Mei et al., 2014) were completed prior to the release of the promising precipitation 

product called IMERG. 

Traditional statistical methods tend to be less capable of dealing with the non-linear 

conditions and high-dimensional variability of environmental variables (Donoho, 

2000; J. Fan & Li, 2006; Johnstone & Titterington, 2009).The popularity of 

machine learning promises huge improvements, thanks to big data, advanced 

algorithms such as deep learning and ensemble methods, and increased 

computational power (Li, 2022).Random Forest algorithm significantly enhances 

satellite-based precipitation estimation (Li et al., 2021b; Lao et al., 2021; He et al., 

2016).Numerous studies have underlined that XGBoost proves its efficiency in 

regression related tasks, showing outstanding performance even with complex and 

high-dimensional data (e.g., Zhang et al. 2018; Zhong et al. 2018; Nguyen et al. 

2019; Feng et al., 2021).This study focused on the bias correction of the IMERG 

precipitation record by investigating how environmental features and their 



 

 

9 

interactions impact the performances of different models. SHAP is used to enable 

model-agnostic interpretability, showing the importance of the features and their 

contribution to the result (Li, 2022). The motivation of this study is to uncover 

relationships between environmental factors and satellite precipitation data in order 

to obtain robust local precipitation data. Within this motivation, the goals of this 

study are; 

 Improving the accuracy of satellite precipitation products (SPPs) in 

Turkiye.  

 Solving the spatial representation problem of IMERG by using ground 

observation data 

 Training machine learning models using environmental features and apply 

them to ungauged areas 

 Interpreting the control of complex environmental features, such as 

topography, on precipitation patterns over Turkiye. 

 Utilizing the SHAP library to explain and interpret machine learning 

models to understand model decision mechanisms  

 Producing robust and accurate precipitation products with using only one 

satellite product with related environmental features 
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CHAPTER 2  

2 STUDY AREA AND DATASETS 

The goal of this chapter is to inform the reader about the study area and the 

datasets. An examination of the dataset is given to evaluate the models and their 

training steps. This chapter also provides information about preprocessing, which is 

used to improve the quality and relevance of the data and thus optimize model 

performance. 

2.1 Study Area 

In the Turkiye, topographical varieties from high mountains to arid plateaus to 

coastal influences give a characteristic shape to different precipitation patterns and 

climatic conditions (Amjad et al., 2020). Starting from the north to the south, these 

parts contain major mountain ranges on the ridge orographic and a flat plateau in 

the middle (Amjad et al., 2020). Topography is among the key factors affecting the 

precipitation and precipitations pattern of Turkiye (Amjad et al., 2020). The 

country has a diversified climatic condition, with its coastal areas usually mild and 

interior Anatolian Plateau experiencing extremely hot summers with cold winters 

and minor annual precipitation (Sensoy, 2004; Amjad et al., 2020). 

Selection of the study area was performed to capture the unique peninsular shape 

and diversified climate and complex topographical characteristics of Turkiye. The 

meaning of "complex topography" varies according to different literatures: To 

illustrate, some refer to it in terms of high elevation (e.g., Dinku et al., 2002; Hirpa 

et al., 2010; Milewski et al., 2015), while others describe it as the standard 

deviation of elevation (e.g., Chiaravalloti et al., 2018). Among studies, a clear 
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explanation for the complex topography is lacking. The reason in Turkiye is high 

elevation, steep slopes, and the resulting impact on variable climatic conditions 

(Amjad et al., 2020). Due to topography, the amount of precipitation is certainly 

influenced by such factors because air, warmed through the influence of 

topography while ascending, leads to condensation along slopes and results in 

higher precipitation where the gradients are steep (Hughes et al., 2009). These 

would be the topographic and climatic conditions that will seriously challenge the 

accurate measurement of precipitation with the use of the Satellite Precipitation 

Products. 

In Turkiye, the long-term average annual precipitation was recorded as 573.4mm 

(1991-2020 period), During 2023, the average annual precipitation was 

approximately 12% higher than the long-term average reaching 641.5 mm (General 

Directorate of Meteorology (GDM), 2023). The selection of the area depends on 

the number of rain gauges. The gauges should be representative of the area. Figure 

2.1 shows the distribution of quality controlled rain gauges in the area. 301 gauges 

distributed around the study area represent different climatic and topographical 

parts of Turkiye, of which 244 are green, linear gauges and the remaining 57 are 

purple, triangular test gauges. Coastal and inland gauge total precipitation amounts 

change because of mountain blockage (Amjad et al., 2020). There exist a number 

of studies performed to characterize the accuracy of precipitation products over 

Turkiye (e.g., Bıyık et al., 2009, Demir et al., 2018, Derin and Yilmaz, 2014, Toros 

et al., 2018, Yucel, 2015, Yucel et al., 2011, Yucel and Onen, 2014). 

The study area defined and presented in Figure 2.1 introduces diversified 

topographical and climatic features. The highest annual precipitation in Turkiye 

occurs in the Black Sea region, due in part to the barrier effect from the 

surrounding mountains (GDM 2023; Gottardi et al. 2012). The cross-section in 

Figure 2.2 shows the relatively dry plateau and contrasting orographic features on 

either side. The area selected for showing the complex topography conditions 

influence in precipitation patterns of Turkiye. 
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Figure 2.1. Study Area 

 

Figure 2.2. Cross Section of Study Area 

2.1.1 Bias Correction of Satellite Precipitation Products, Importance and 

Literature Review 

2.2 Datasets 

2.2.1 Ground Based Precipitation Data 

Ground-based precipitation observations are essential for understanding 

precipitation patterns. It is measured by an instrument called a gauge. Gauges 

measure points of precipitation on the surface. They are located in different 

environmental areas to collect information on the intensity of rainfall over time. 

The ground-based gauge dataset for this study was provided by the General 

Directorate of Meteorology (GDM). The most common instrument used to measure 
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precipitation is the rain gauge. These instruments aggregate rainfall at a specific 

point and measure the amount of precipitation. A total of 301 qualities controlled 

and complete rain gauges were used in the study. Figure 2.1 shows a map of the 

study area and the distribution of gauges. The data covers the period between 

January 2015 and December 2022.  

2.2.2 IMERG/Satellite-based Precipitation Product 

Integrated Multi-Satellite Retrievals for GPM (IMERG) is an algorithm developed 

by NASA that has been evaluated for estimating surface precipitation from satellite 

retrievals with global coverage (Huffman, 2019; Huffman et al., 2018). NASA 

applied the IMERG algorithm to both TRMM-era and GPM-era data, creating a 

relatively long (more than 20 years), high spatial (0.1 degrees) and temporal (30 

minutes) resolution satellite-based precipitation record with near global coverage.  

The Global Precipitation Measurement (GPM) mission is an international satellite 

mission launched by NASA and JAXA (on February 27, 2014) following the 

success of the Tropical Rainfall Measuring Mission (1997-2015; Gebregiorgis et 

al., 2018). The main component of the GPM mission is the "Core Observatory" 

satellite, which carries an advanced radar/radiometer system to measure 

precipitation from space and serves as a reference to unify precipitation 

measurements from a constellation of satellites. IMERG products are available for 

free download (https://gpm.nasa.gov/data/imerg). The IMERG algorithm consists 

of three products. They are Early, Late, and Final. The Early and Late IMERG 

products are satellite-only products with a lag of 3 hours and 12 hours, 

respectively. They are near real-time products. IMERG Final Run, on the other 

hand, uses MERRA2 for the vertically integrated vapor, GPCC monthly 

monitoring analysis for the gauge, and revised precipitation retrievals that depend 

on ERA-5 to further correct the satellite-based precipitation retrievals. The 

integration of these additional data sets requires a latency of about 3.5 months for 

the final run.  
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These products used in the IMERG algorithm to update data from TRMM, which 

outperforms the TRMM Multi-Satellite Precipitation Analysis (TMPA) algorithm 

(Gebregiorgis et al., 2018). The GPM core satellite is a multi-channel, dual-

polarization passive microwave (PMW) sensor with an active scanning radar. 

Compared to the previous system, the TRMM satellite, this system has several 

improvements: the orbital inclination has been increased from 35° to 65° for better 

coverage; the radar has been upgraded from single to dual frequency, while "high 

frequency" channels have been added to the PMW, allowing and enabling the 

detection of light and solid precipitation, respectively. (Huffman et al., 2015; Hou 

et al., 2014; Ramsauer et al., 2018). The IMERG algorithm collects data from 

multiple satellites and merges them to obtain global precipitation. 

The IMERG Late product is a near real-time, gridded, multi-satellite global 

precipitation estimate with quasi-Lagrangian time interpolation provided every 30 

minutes at 0.1° × 0.1° (Huffman., 2019; Huffman et al., 2018).  

2.2.3 Digital Elevation Model (DEM) 

This study used the Copernicus European Union Digital Elevation Model (EU-

DEM 1.1). This DEM is part of the European Union Earth Observation datasets 

under the Copernicus program. The spatial resolution of the DEM is 25 m with 

vertical accuracy: +/- 7 m RMSE (EU-DEM 1.1). The DEM data were used in this 

study to illustrate the spatial distribution of precipitation as a function of 

topography and elevation change. The effects of topography and related features 

are considered to provide a more reliable and accurate representation of 

precipitation. DEM data were also used to obtain Effective Terrain Height (ETH), 

Distance to Coast, and Facet features to represent not only elevation but also other 

related feature effects on precipitation. These topographic features were selected 

considering the Precipitation-elevation Regressions on Independent Slopes Model 

(PRISM; Daly et al. 2008; Daly, 2006; Daly et al. 2002). 
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2.2.4 Climate Zones 

Climate regions are important for developing effective strategies in meteorology, 

hydrology, forestry, and agriculture. Iyigün et al. (2013) used a hierarchical 

clustering method called Ward's method to classify climate regions in Turkiye 

according to temperature, precipitation and humidity data from meteorological 

stations for the period 1970 to 2010 (Iyigün et al., 2013). This study used 224 

meteorological stations across Turkiye and identified 12 climate zones (Iyigün et 

al., 2013). Figure2.1 shows the climate classes with numbers. In the study area, 5 

different climate classes influence our models. These climate classes are presented 

and defined below: 

The Dry-subhumid Mid-Western Anatolia Region is described as a transition 

zone between the semi-humid Aegean and the humid Mediterranean to the dry 

subhumid/semiarid continental central Anatolia region (Iyıgün et al., 2013). This 

region is located in the western part of the study area. This climatic region is 

symbolized as number 2 and is shown in figure 2.3. 

The Dry Summer Subtropical Humid Coastal Mediterranean Region is coastal 

desert in winter experiences a distinct season of mid-latitude cyclones and tropical 

high pressure systems in summer. This climate class is seasonal in that there is 

always high rainfall in the winter season and low rainfall in the summer. This 

climate is also characterized by Mediterranean forests and scrub (Iyıgün et al., 

2013). These are symbolized by the number 3 and are shown in Figure 2.3. 

Semihumid Eastern Marmara Transition Sub-region is specified as transition 

climate region in between the Mediterranean, and the Black Sea climate regions. 

The vegetation of this climate is mainly mixed or pure dry forests (both conifers 

and broad-leaved deciduous and red pine and oaks) and maquis (Iyıgün et al., 

2013). The northern part of the study area has this climate region and is shown in 

figure 2.3 as number 4. 
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Dry-subhumid/Semiarid Continental Central Anatolia Region is characterized 

by a mesothermal and microthermal Continental Central Anatolia climate. The 

indicated vegetation consists of dry forests and expansive steppe lands across its 

huge plains, plateaus, and highlands (Iyıgün et al., 2013). This climate region is 

presented in figure 2.3 as number 7. The central part of the Anatolian region and 

the study area belong to this climate region. 

Mid-latitude Humid Temperate Coastal Black Sea Region occurs in the mid-

latitude region of the Black Sea coastal belt. The Black Sea coast, with the 

exception of the part in the Marmara region, is considered to be within the humid 

temperate region of the mid-latitude Black Sea coast. This region is subject to 

precipitation throughout the year. Due to the effects of mid-latitude cyclones and 

the orographic uplift of polar air masses, the heaviest rainfall occurs in the autumn 

season. The vegetation is characterized by humid boreal mixed forests It is shown 

as number 8 in Figure 2.3.  

 

Figure 2.3. Map of Iyigün Climate Classes 
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2.3 Pre-processing of Data 

2.3.1 Pre-processing 

SPP needs to be integrated with ground gauge observations (Rasmy et al., 2014; 

Zhou et al., 2022). The bias in the satellite precipitation data is corrected using the 

gauge data. The structure of precipitation is complex and therefore highly variable 

in space and time (Marani, 2005).  Satellites do not account for topography, and 

this feature improves model performance (Senocak et al., 2023), so precipitation-

related environmental features were obtained to train the models. 

Eliminating biased gauges improves the quality of the target variables. Following 

the PRISM methodology of Daly et al. (2008), distance to shore facet and elevation 

were selected to improve model accuracy. The IMERG data are pre-processed to a 

daily value and synchronized with gauge data. The pre-processed input data were 

converted to tabular form. Categorical variables converted to one-hot encoded 

features to make them easier for machine learning models to understand. Table 2.1 

shows an example of an input table used to train the model (F: Facet, CR: Climate 

Region). 
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Table 2.1. Input table sample 
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2.3.1.1 Quality Control of Gauges 

The quality of the target data is directly related to the quality and reliability of the 

results. Calibration issues can affect the quality of rain gauge data (e.g., Robinson 

and Rodda, 1969; Constantinescu et al., 2007; Sieck et al., 2007).  Therefore, it is 

critical to account for errors in gauge data that create the potential for poor 

generalization of models. In this study, to ensure the quality of the target variable, 

gauges with more than 10% missing (null) values were eliminated to reduce noise 

in the data. Then, the cumulative precipitation of each station is compared with 

nearby stations by considering topographic effects with double mass curves (DMC) 

to understand the consistency and harmony of rain gauges. Anomalies are detected 

and related hydrographs are also examined to eliminate gauges with bias. After 

eliminating insufficient gauges, the sufficient number of gauges is 301 to represent 

the spatio-temporal variability of precipitation within the study area. 

The gauges with a high amount of missing data or data with bias introduce noise 

into the models, which can distort the model outputs and reduce the reliability of 

the models. In addition, using only gauges with rich and accurate records reduces 

bias and improves the overall performance of the Random Forest and XGBoost 

models. Figure 2.4 shows an example of the DMCs used in the study plots (a-

coherent, b-non-coherent rain gauge data). Each station was compared with its 

neighbors to find errors in the record. Topographic factors were meticulously 

considered. Plots of DMCs, along with hydrographs and vital statistics (R², slope, 

bias ratio, and number of missing data) were drawn to clearly assess station 

performance. Incoherent plots have vertical or horizontal line structures. 

Hydrographs are checked after observing these anomalies, then stations with 

missing records were eliminated (Figure 2.4 plot b:x axis station was eliminated). 
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Figure 2.4. Double Mass Curve Graphs to Compare Coherence Between Gauges 

 

(a) 

(b) 
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CHAPTER 3  

3 METHODOLOGY 

The purpose of this chapter is to inform the reader of the methodological processes. 

Bias correction algorithms and their working principles are also covered to ensure 

that the reader understands the whole process. In addition, this study uses advanced 

bias correction algorithms and explainable artificial intelligence (XAI) techniques, 

mainly from the SHAP library, to provide transparency in model decisions.  

3.1 Features 

Satellite precipitation estimates are derived from measurements of meteorological 

quantities by highly specialized sensors on satellite platforms. However, this 

approach often fails to adequately represent topographic effects on precipitation, as 

factors such as slope and elevation changes have the potential to influence local 

precipitation pattern characteristics. Higher slopes and elevations receive more 

precipitation due to condensation or orographic lift (Hughes et al., 2009). There are 

numerous studies showing that SPPs contain significant uncertainties over complex 

topography because they are unable to represent the effect of topography on 

precipitation when the influence of topography is high (e.g., Derin et al. 2016, 

Hirpa et al., 2010; Krakauer et al., 2013; Mantas et al. 2015; Thouret et al. 2013,). 

Some studies show that SPPs contain large errors when orographic precipitation is 

highly effective over the area (Derin et al., 2016; Derin and Yilmaz, 2014; Dinku et 

al., 2007; El Kenawy et al., 2015).  These studies were considered in the feature 

selection. 
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Proper feature selection is key to quality bias correction and model development. A 

feature should represent a region with due clarity and relevance to the task. Table 

3.1 shows the selected features. There are two groups of features in this study: 

static and dynamic. Static features are Iyigün Climate Regions, Facet, Elevation, 

Distance to Coast, Effective Terrain Height (ETH), Longitude, and Latitude. The 

IMERG products represent dynamic features such as daily precipitation and 

probability of liquid precipitation. 

Table 3.1. Machine Learning Algorithm Feature Classification 

Features 

Static Dynamic 

Iyigün Climate Classes (Iyigün) IMERG 

Facet Probability of Liquid Precipitation (PLP) 

Elevation (Elev)   

Distance to Coast (Dist_Coast)   

Effective Terrain Height (ETH)   

Longitude (Long)   

Latitude (Lat) 
 

 

In this study, Facet, Effective Terrain Height, and Distance to Coast features were 

created based on the Precipitation-elevation Regressions on Independent Slopes 

Model (PRISM; Daly et al. 2008; Daly, 2006; Daly et al. 2002) in order to gain a 

deeper understanding of the effect of complex topography on the precipitation 

distribution in Turkiye. 

3.1.1.1 Facet 

Facet is the relationship between the slope of the terrain and its frequent 

orientation. Facets group different landforms, ranging in size from gigantic 
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mountains to gentle slopes. (Daly et al. 2008). A Gaussian filter was applied in the 

Matlab environment to generate facet data from the DEM. Wavelengths with 

different values are applied to the original DEM data for smoothing. The filter 

wavelengths applied to the DEM data have 3 values (λ= 5, 10, 12.5 km). The 

original DEM resolution is 25 m. Based on the DEM resolution, the filter 

wavelengths are determined by value differences to obtain better results. The 

specific orientation of a cell is determined by the orientations of neighboring cells 

within a radius equal to the wavelength. This approach ensures that the applied 

filter does not calculate orientation based only on the applied cell and its neighbors. 

It is determined by elevation variations over a larger surrounding area. The 

orientation value of each cell in the DEM data was then determined by comparing 

its elevation to its 8 neighboring cells, with 4 neighboring cells given double 

weight. Differences between cell values were taken into account to assign numbers 

between 1 and 8, corresponding to N, NE, E, SE, S, SW, W, and NW compass 

orientations, respectively (Daly et al. 2008). 

3.1.1.2 Distance to Coast 

The Distance to Coast feature is generated from the coastline and DEM data in 

ArcGIS using the Euclidean Distance tool. The generalized coastline was used 

because bays and inlets were not considered to be important sources of moisture for 

precipitation compared to the open sea. The purpose of calculating the distance to 

the coastline feature is to examine precipitation occurrence in relation to proximity 

to large bodies of water (Daly et al. 2008). Coastal areas may have different 

precipitation patterns due to interactions between sea and land. Turkiye has some 

sea affecting precipitation such as the Mediterranean Sea, and the Black Sea. 



 

 

26 

3.1.1.3 Effective Terrain Height 

Using the Copernicus DEM data, the Effective Terrain Height (ETH) feature was 

obtained in the ArcGIS environment. Firstly, the minimum elevation within the 

40km radius is determined for each cell. The spatial average of the minimum 

values of each cell is calculated to smooth the DEM data. This smoothed elevation 

data was then extracted from the original DEM data to obtain the ETH value. 

Finally, this value is smoothed by averaging within a 20 km radius (Daly et al. 

2008). 

3.1.1.4 Probability of Liquid Precipitation (PLP) 

Satellite precipitation products tend to contain more errors when estimating 

precipitation, including snowfall, and the performance of the products decreases 

(Derin and Yilmaz, 2014). The active radar on board the GPM mission allows the 

identification of the phase of precipitation by focusing on different wavelengths. In 

this study, the probability of liquid precipitation (PLP) of the IMERG product is 

also used to understand the effect of the precipitation phase on the satellite products 

and to correct the bias accordingly.  This feature takes values between 0 and 1. 

Higher PLP values indicate rain. A value of 0.5 represents a mixture of rain and 

snow. Snow and snow pellets are represented as equal to or less than 0.5. A value 

of 0 represents ice. Dew and frost are not events directly related to precipitation, so 

the IMERG PLP data do not include information on them (Huffman., 2019). 

3.1.1.5 Correlation of Features 

Features of any machine learning model can contain similarities (Nohara et al., 

2022), which in turn can reduce the effectiveness of machine learning models. 

Maximum relevance and minimum redundancy are desired to make machine 

learning model results more accurate and robust (Zhao et al., 2019). The correlation 
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matrix of features is constructed to determine pairs of related features. Related 

features provide the same information to machine learning models called as feature 

redundancy and negatively affect the performance of the model because models 

may not learn related information from other features (Zhao et al., 2019). 

Correlations of features can prevent interpretation. Therefore, correlated features 

are usually removed before training the models (Nohara et al., 2022). Thus, feature 

correlations are examined before model training to increase efficiency, and these 

correlations between static features are shown in Figure 3.1. Only time-

independent feature correlations are considered to provide an overall view of the 

features. The feature correlations are not high. Therefore, these features are suitable 

for machine learning algorithms. Positive correlations show tendency of features to 

increase together while negative value of correlations indicates that increase in one 

feature resulted as decrease for other one (Nicodemus & Malley, 2009). Correlation 

value of 0 indicates that there is no correlation between features (Nicodemus & 

Malley, 2009). 

Highly correlated features provide redundant information to the model in the 

training step (Zhao et al., 2019). With feature redundancy, models become 

overconfident and produce results without considering other features, which 

reduces the generalization ability of models (Zhao et al., 2019). To avoid 

redundancy of features, this study only considers IMERG, a merged satellite 

precipitation product, in the training process. Using other satellite precipitation 

products along with IMERG creates redundancy and lessens the effectiveness of 

the model. It further removes the effects of environmental features that the satellite 

precipitation products cannot represent. 

Shapley values also produce unrealistic results when features are correlated (Salih 

et al., 2024). High correlations require feature engineering to construct new 

features Feature engineering categorizes and converts existing data or provides new 

information (Chollet, 2017; Senocak et al., 2023). 
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Figure 3.1. Feature Correlation Matrix of Static Feature 

3.2 Bias Correction Algorithms and Explainable Artificial Intelligence 

(XAI)  

Satellite precipitation products have inherent errors, but correcting their bias leads 

to significant improvements, increasing their value in hydrological modelling 

studies (Derin & Yilmaz, 2014; Yilmaz et al., 2005; Su et al., 2008; Thiemig et al., 

2013). Tree-based AI models such as random forest and XGBoost provide more 

interpretable with higher prediction accuracy in precipitation than traditional 

statistical models (Başağoğlu et al., 2022; Chakraborty et al., 2021a; Chang et al., 

2016; Dumitrescu et al., 2021). On tabular data containing independent and 

meaningful features, tree-based machine learning models outperform neural 

network-based deep learning models (Lundberg et al., 2020; Feng et al., 2021). The 



 

 

29 

advantages of tree-based algorithms lie in their capability of understand intricate 

patterns between parameters resulting in robust output data. 

The inclusion of environmental parameters increases the accuracy and quality of 

the corrected data. In areas where environmental features are especially effective 

drivers of precipitation (such as topographic complexity). Multiple features related 

these drivers improve performance of models.  

3.2.1 Model Selection 

The model selection process is a critical part of the bias correction of IMERG 

precipitation products. Several factors come into play when selecting a model, 

including data characteristics (type, volume, linearity), accuracy, interpretability, 

and effectiveness of the model for the specific subject. Each model has advantages 

and disadvantages. To illustrate, high-dimensional nonlinear data may not be 

handled by simple models. Simple models often fail to learn the complex internal 

patterns of the given data in a meaningful manner. Therefore, they memorize the 

data, a phenomenon called overfitting. More complex models may struggle with 

interpretability and transparency (Lin et al., 2023).  

The machine learning models evaluated in this study are random forest (RF) 

(Breiman, 2001) and extreme gradient boosting (XGBoost) (Chen and Guestrin, 

2016) for satellite-based precipitation estimates. Models are selected based on high 

prediction accuracy in multivariate nonlinear problems in different domains (e.g., 

Chakraborty et al., 2021b; Ben Jabeur et al., 2021; Qiu et al., 2020; Geurts and 

Louppe, 2011; Acosta et al., 2020; Jabeur et al., 2022). The effectiveness of 

machine learning has been widely demonstrated under conditions of complicated 

problems with non-linear datasets. These conditions make it difficult to build 

physical models using conventional mathematical and statistical analyses (El-Alfy 

and Mohammed, 2020).  
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3.2.2 Evaluation of Model Training Process 

The selected gauge target variable and environmental features have been carefully 

prepared in daily tabular form as input to the machine learning models (Random 

Forest and XGBoost) to correct for the IMERG precipitation bias in Turkiye  

To achieve robust precipitation data in Turkiye, XGBoost and Random Forest 

models were trained separately for each day. Random Forest model was 

implemented from Python scikit learn random forest regressor models (Pedregosa 

et al., 2011), XGBoost python package was used to fit XGBoost models (developed 

by Chen & Guestrin, 2016).  

Several metric scores calculated to understand and evaluate the model 

performance, detailed information given in Metric used for model evaluation part 

and metric results and evaluations are provided in the Results chapter. Models run 

on a daily basis, so their performance varies. Models with the highest scores are 

generally found on days when more gauges’ report precipitation (higher coverage). 

3.2.3 Transparency of Machine Learning Models 

3.2.3.1 Difference between Interpretable Machine Learning (IML) and 

Explainable Artificial Intelligence (XAI) 

Interpretable Machine Learning (IML) and Explainable Artificial Intelligence 

(XAI) are concepts about the human understandability of machine learning models. 

However, these concepts differ from each other. IML includes models with 

transparent decision mechanism and understandable by humans without 

considering other explainers, therefore called as white box (Ersöz et al., 2022).  

Examples of IML models are linear regression and decision trees. On the other 

hand, Explainable AI focuses on explaining the results of more complexes, often 

"black box" models by using explainers to make their decision mechanisms 
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transparent by showing process of decision (Ridley, 2022; Senocak et al., 2023). 

Examples of models that require XAI are deep neural networks or ensemble 

methods such as random forest and XGboost.  

3.2.3.2 Concept of XAI 

The concept of Explainable AI aims to shed light on the inner workings of machine 

learning models, which are often seen as impenetrable black boxes. This black-box 

nature can lead to unexpected performance and also makes human inspection of 

such models impossible. (Castelvecchi, 2016; Senocak et al., 2023). As artificial 

intelligence touches more and more areas of our lives, the importance of 

Explainable AI is growing. 

The Random Forest and XGBoost algorithms are ensemble methods that build 

numerous decision trees, creating complex structures that reduce the 

understandability and trustworthiness of the models. Fortunately, they can be 

interpreted globally or locally using XAI techniques. Global explainers provide 

insight into the overall behavior of a model, helping to understand how it makes 

decisions across the dataset through general patterns and feature importance. 

Examples of global explainers include permutation feature importance (PFI; 

Breiman, 2001), accumulated local effects (ALEs; Apley & Zhu., 2020), and 

SHapley additive explanations (SHAP; Lundberg and Lee, 2017; Lundberg et al., 

2020). On the other hand, local explainers focus on detailed explanations of 

individual predictions. Examples of local explainers are local interpretable model-

agnostic explanations (LIME; Ribeiro et al., 2016) and SHapley additive 

explanations (SHAP; Lundberg and Lee, 2017; Lundberg et al., 2020). 

One of the XAI techniques used in this study is SHAP (Shapley Additive 

explanations) (Lundberg and Lee, 2017; Lundberg et al., 2020). SHAP is a local 

and global explainer that finds the exact contribution of traits by considering all 

possibilities (Lundberg and Lee, 2017), whereas other local explainers such as 
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LIME are not exact values. Therefore, merging SHAP values of different 

predictions is possible while other local explainers introduce bias in the results.   

In this study, Tree explainer (Lundberg et al., 2020), which is suitable for tree-

based algorithms such as random forest and XGBoost, is utilized. 

3.2.4 Random Forest 

Random forest is a supervised machine learning algorithm (Breiman, 2001) that 

efficiently solves both regression and classification problems. During the training 

process, this algorithm creates an ensemble of decision trees (Gong et al., 2020), a 

resembling technique called bootstrapping generates random subsets from the 

original data (Efron 2000; Sushanth et al., 2023; Stef et al., 2023) to build each 

tree. Each subset is randomly drawn and may have duplicate rows to build different 

decision trees. This allows the model to better handle complex relationships, avoid 

overfitting, and improve generalization.  

While performing classification, it aggregates the majority votes from trees (Mod), 

regression models calculate the average of each tree (Sushanth et al., 2023). The 

performance and functions of the models are determined by hyperparameters 

(Rong et al., 2020; Sam et al., 2020; Wang et al., 2021). The random forest 

algorithm is advantageous for satellite-based precipitation estimation (Li et al., 

2021b; Lao et al., 2021). Random forest models from the ScikitLearn library are 

used in this study (Pedregosa et al., 2011). 

Machine learning algorithms have become increasingly popular for bias correction 

(Zeng et al., 2021; Wang et al., 2020). To illustrate, He et al. (2016) developed a 

random forest method to improve precipitation in the United States. They used 

numerous spatial resolutions for downscaling and tested the performance of the 

product. They concluded that the spatial distribution is the main problem of SPPs, 

and this problem can be reduced by a random forest algorithm. 
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3.2.5 XGBoost 

XGBoost is designed to extend the machine learning algorithm of the gradient 

boosting framework by using an ensemble learning method (Chen & Guestrin, 

2016).  Ensemble means building more than one base model to compute results. It 

constructs predictive decision tree models as weak learners by iteratively correcting 

the errors of previous models using a method called gradient descent to minimize a 

given hyper function (Chen & Guestrin, 2016; Chollet, 2017; Li et al., 2023; Stef et 

al., 2023; Senocak et al., 2023).  As an improvement of the gradient-boost decision 

tree algorithm (GBDT) (Han et al., 2024; Hancock & Khoshgoftaar, 2020; 

Friedman, 2001), XGBoost is known for its high accuracy, speed in processing 

time, capture of complex nonlinear relationships, and computational efficiency (Ali 

et al., 2023; Zhu et al., 2023). XGBoost is well suited for bias correction of satellite 

precipitation products because the technique can effectively model the complex 

nonlinear relationships and thus correct systematic bias to improve the accuracy 

and reliability of satellite precipitation estimates (Ali et al., 2023; Zhu et al., 2023). 

XGBoost provides efficient tree pruning, regularization to reduce the complexity of 

decision trees to improve performance and versatility. XGBoost is also a highly 

compatible model with SHAP and tree explainer can efficiently provide SHAP 

values (Lundberg et al., 2018). In a study comparing four ML-based algorithms and 

three interpolation methods, XGBoost was selected as the best performer in 

evaluating the downscaling of precipitation data via other parameters (Zhu et al., 

2023). Other regression-related studies have also utilized XGBoost and recorded its 

success (e.g., Zhang et al., 2018; Zhong et al., 2018; Nguyen et al., 2019; Feng et 

al., 2021). 

3.2.6  Hyperparameter Tuning 

Model performance and accuracy depend on hyperparameters that define how the 

model operates to optimize accuracy (Chollet, 2017; Rong et al., 2020; Sam et al., 
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2020; Wang et al., 2021; Verma et al., 2022; Senocak et al., 2023).  Proper tuning 

ensures that the model captures the most important patterns in the data without 

being overly complex or biased. Effective hyperparameters tuning improves the 

model's ability to generalize to unseen data, resulting in better performance metrics 

and more reliable predictions by selecting optimal hyperparameters that maximize 

model performance and accuracy. This requires adjusting parameters such as 

number of trees and tree depth to prevent overfitting and improve model 

robustness.  

Bayesian optimization improves performance and efficiency by quickly finding the 

optimal hyperparameters space (Klein et al., 2016; Stuke et al., 2020; Wang et al., 

2021). Bayesian optimization emerges as a probabilistic model-based approach to 

effectively navigate the hyperparameters space through iterative processes. Using 

the Bayesian algorithm to optimize hyperparameters in random forest and extreme 

gradient boosting decision tree models has been shown to be highly effective (e.g., 

Wang et al., 2021). Different combinations of hyperparameters are explored by 

Bayesian search to find the combination with minimum bias and maximum 

efficiency and accuracy. The BayesianSearchCV function in sci-kit-learn 

(Pedregosa et al., 2011) is used to tune the hyperparameters. By systematically 

exploring different combinations of hyperparameters, Bayesian search selects the 

set of parameters that minimizes bias and maximizes the performance efficiency 

and accuracy of the models.  

In the region with complex topography, the tuning of hyperparameters becomes 

particularly important due to the complicated relationships between parameters and 

precipitation caused by the complex topography and associated climate changes. It 

selects the most appropriate parameters by finding the minimum of objective 

functions in large problem spaces (Peter, 2018) so that environmental descriptors 

benefit with the highest efficiency. Understanding feature changes and topographic 

influences to improve the accuracy of satellite-based precipitation data. 
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3.3 Metrics Used for Model Evaluation 

Metrics used for model evaluation and comparisons are Coefficient of 

Determination (R2), Kling–Gupta efficiency (KGE), Alpha, Beta, r, Root Mean 

Square Error (RMSE), Probability of detection (POD), False Alarm Ration (FAR), 

Critical Score Index (CSI), Bias Error and Mean Bias Error (MBE). 

Firstly, the accuracy of the model was analyzed using the Root Mean Square Error 

(RMSE), KGE and its components which are commonly employed in the literature 

(e.g. Zhu et al., 2023). All metrics reported in this study were strictly derived 

from the test data. Original filtered IMERG vs. ground gauge data statistics were 

also calculated to represent the harmony between satellite precipitation products 

and ground observations. The study aims to improve the simulation of precipitation 

data by exploiting the superior capabilities of advanced Random Forest and 

XGBoost algorithms for better fits to ground observations. 

3.3.1 Filter Usage and Its Importance 

In this study, the models were trained daily for each day, but since the model 

predictions for days with no precipitation are meaningless and distort the global 

feature importance scores, the models were selected by filtering all metric and 

SHAP plots. The models are filtered by the number of stations in the train data with 

2 mm/day or more precipitation greater than or equal to 25 and the corresponding 

daily SHAP values of the test data in order to understand and represent the feature 

contributions in a meaningful way. The choice of this filter was based on the need 

to understand not only the days with high precipitation, but also the spatial 

distribution of the precipitation and how the models perceive this distribution. For 

example, since it is quite possible to observe precipitation in only one area in 

Turkiye, summer precipitation is only dominant in the Black Sea region of the 

study area (Sensoy et al., 2008). In order to keep the variability of the data above a 

certain level, 2 mm/day of precipitation was considered appropriate. 
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3.3.2 Coefficient of Determination (R2) 

The scikit-learn metric library includes numerous model selection and evaluation 

tools according to model types such as classification, regression, and clustering 

(Pedregosa et al., 2011). In this study, R2 (coefficient of determination) in scikit-

learn is used to evaluate the performance of models and original filtered IMERG 

data from ground observations. 

A value of 1 represents perfect representation. Negative values (-Inf is the 

minimum) are also possible for models that are worse than a base model. The 

output of a base model is always the average of the target variable (ground 

observation), ignoring the inputs. A model that always predicts the average target 

variable receives an R2 value of 0.0 (Pedregosa et al., 2011). In this study, days 

without rain or low precipitation are predicted by the models as 0 mm/days or close 

to 0 mm/days, and the average of the model predictions is almost the same as the 

average of the observations, so the R2 score is calculated as 0 close to 0. In this 

situation, there is no feature that affects the target variable, so it is pointless to use 

different features. 

The mathematical representation of R2 is given as: 

𝑅2(𝑦, 𝑦
^

) = 1 −
∑ (𝑦𝑖−𝑦

^
𝑖)2

𝑛

𝑖=1

∑ (𝑦𝑖−𝑦)2𝑛

𝑖=1

                              (1) 

  𝑦𝑖

^
 is the predicted value of the 𝑖-th sample  

  𝑦𝑖 is the corresponding true value for total 𝑛 samples 

  𝑦 is the mean of all true values (Pedregosa et al., 2011). 

The coefficient of determination is a very useful but limited metric, especially for 

complex real-world applications. Other topic-related evaluations must also be 

considered to define the overall performance of machine learning models. 
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3.3.3 KGE and KGE Components 

Kling-Gupta Efficiency (KGE) is an important unitless metric in hydrological 

modeling recognizing that calibration of hydrological models is a multi-objective 

task (Gupta et al., 1998). KGE decomposes and obtains different components 

(correlation, bias and variability) from the Nash-Sutcliffe Efficiency (NSE) in the 

concept of hydrology (Gupta et al., 2009). In addition, each component of the KGE 

provides unique insights into the objective performance of models, highlighting 

their strengths and weaknesses: 

KGE = 1 − √(r − 1)2 + (α − 1)2 + (β − 1)2              (2) 

Where: 

  r: correlation coefficient. 

  α: Variability ratio (standard deviation ratio of simulated vs observed). 

  β: Bias ratio (mean ratio of simulated vs observed). 

Understanding the KGE and its components of correlation coefficient (r), bias ratio 

(beta), and variability ratio (alpha) is critical for effective water resource 

management. The correlation coefficient (r) shows how well the model output 

matches the observations over time.  The bias ratio (beta) shows how the model 

overestimates or underestimates the overall magnitude of the observations, and the 

variability ratio (alpha) shows how the model overestimates or underestimates 

variability. The ideal value of each component - r, α, β - is 1. 

3.3.4 Root Mean Squared Error 

Root Mean Squared Error (RMSE) is a common metric used to evaluate model 

performance to show how well the model is working. RMSE is derived from the 

root mean square error. In this study, RMSE is calculated from Scikit-learn metrics 

(Pedregosa et al., 2011). The better the prediction of the model, the lower the 



 

 

38 

RMSE. The higher the value, the larger the error margin. The unit of the RMSE is 

the same as the unit of the dependent variable y (mm/day). 

RMSE(𝑦, 𝑦
^

) = √
∑ (𝑦𝑖−𝑦

^
𝑖)2

𝑛samples−1

𝑖=0

𝑛samples
                               (3) 

In equation 3; 

  𝑦
^

𝑖 is the predicted value of the 𝑖-th sample 

  𝑦𝑖is the corresponding true value (Pedregosa et al., 2011). 

3.3.5 Metrics for Precipitation Events and Extreme Precipitation Events 

Traditional metrics such as Kling-Gupta efficiency or other conventional 

performance metrics tend to be inadequate to adequately capture model 

performance with respect to extreme precipitation events. Therefore, in this study, 

precipitation events were grouped according to precipitation event thresholds that 

provide an accurate representation of model event performance. The general 

precipitation event thresholds are 1 mm/day, 2 mm/day, and 5 mm/day, and the 

extreme precipitation event thresholds are 10 mm/day, 20 mm/day, and 50 

mm/day. The purpose of the threshold is to provide an accurate representation of 

model performance and to define true positive (TP), true negative (TN), false 

negative (FN) and false positive (FP) values. 

3.3.5.1 Probability of Detection (POD) 

Probability of Detection (POD) (unitless) is the first measure of model performance 

for precipitation and extreme events with event thresholds. The POD score 

represents the ability of the model to capture real events as they occur (Sharifi et 

al., 2016). POD is the proportion of correctly identified events out of all observed 

events: 
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𝑃𝑂𝐷 =
TP

TP+FN
                                                (4) 

  TP: True Positive: Events that correctly predicted 

  FN: False Negative: Events that actually occurred but models missed 

  The best POD score is 1, indicating that all events are predicted. 

3.3.5.2 False Alarm Ratio (FAR) 

False alarm ratio (FAR) (unitless) is the proportion of reported but not observed 

events over all reported events: 

𝐹𝐴𝑅 =
FP

TP+FP   
                                               (5) 

  FP: False Positive: Event actually not occurred but models predicted 

  TP: True Positive: Events that correctly predicted 

The perfect score for FAR is 0 indicating that all predictions are true (Sharifi et al., 

2016). 

3.3.5.3 Critical Score Index (CSI) 

The Critical Score Index (CSI) or Threat Score (TS) (unitless) represents the ability 

of the model to correctly identify events of interest, taking into account false 

alarms and missed events. In other words, the proportion of correct model 

predictions out of all observed and simulated events.  

𝐶𝑆𝐼 =
TP

TP+FP+FN
                                              (6) 

  TP: True Positive: Events that correctly predicted 

  FP: False Positive: Event actually not occurred but models predicted 
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  FN: False Negative: Events that actually occurred but models missed 

A perfect score of CSI is 1, indicating that all predictions are actual events (Sharifi 

et al., 2016). 

3.3.5.4 Bias Score 

The bias score (unitless) is the ratio of model predicted events to observed events, 

representing the tendency of the model to over- or underestimate the occurrence of 

events: 

𝐵𝑖𝑎𝑠 =
TP+FP

TP+FN
                                         (7) 

  TP: True Positive: Events that correctly predicted 

  FP: False Positive: Event actually not occurred but models predicted 

  FN: False Negative: Events that actually occurred but models missed 

The perfect value of the bias score is 1, which represents all predicted events 

occurring. Bias scores greater than 1 indicate overestimation, with models 

predicting more events than actually occur. Similarly, a bias score less than 1 is an 

underestimate, with models predicting fewer events than actually occur. 

3.3.5.5 Mean Bias Error (MBE) 

After analyzing the machine learning models performance according to 

precipitation thresholds. IMERG and the overall model behavior in terms of 

overestimation or underestimation is analyzed by Mean Bias Error (MBE).  

𝑀𝐵𝐸 =
1

𝑁
∑ 𝑃𝑠,𝑖 − 𝑃𝑜,𝑖

𝑁
𝑖=1                            (8) 

  Ps,i is simulated precipitation data 

  Po,i is observed precipitation data.  
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A positive MBE indicates overestimation and a negative MBE indicates 

underestimation. The unit of the MBE is the same as the unit of the dependent 

variable y (mm/day). 

3.4 Explainable AI and SHAP 

Explainable AI (XAI) is used to find out the decision mechanisms of models by 

showing the relationships between input and output values and which features are 

most used by the model in the prediction step (Li, 2022). Machine learning models 

are generally considered to be black boxes (Li, 2022). XAI algorithms also remove 

this black box consideration. The main reasons for the importance of XAI are: 

 Figuring out the reasoning behind output decisions, 

 Contribution of each feature to the result, 

 Checking bias and errors in models, 

 Making decision steps clear and transparent, 

 Enhancing trust in machine learning models by making them user-friendly 

and easy to explain, 

There is no standard definition in the literature for the concept of "explainability" 

in AI models (Adadi and Berrada, 2018; Linardatos et al., 2020; Stef et al., 2023). 

However, if the output of the model can be clearly explained and the logic behind 

the decisions can be understood by humans, then the model is considered 

explainable (Miller, 2019; Stef et al., 2023). 

Shapley scores are derived from game theory concepts to quantify and explain the 

contribution of each feature to the output result (Shapley, 1953; He et al., 2023). 

SHAP is one of the additive feature attribution methods (Lundberg and Lee, 2017). 

SHAP values are effective in elucidating the contribution of each feature to the 

model output and understanding the model behavior (Sushanth et al., 2023; Wang 

et al., 2023). The most common SHAP explicators are kernel SHAP (Lundberg and 

Lee, 2017) and tree SHAP (Lundberg et al., 2020). Tree SHAP, an interpretable 
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method for tree-based algorithms (Feng et al., 2021), improves Kernel SHAP by 

ignoring feature dependencies (Mi et al., 2020) and focusing on individual feature 

contributions. Tree SHAP does not evaluate every possible combination of 

features. Instead, it focuses on a set of computations specific to each leaf in the tree 

(Lundberg et al., 2020; Feng et al., 2021), and this approach makes the 

computational step faster and even more accurate.  

In this study, Tree SHAP was used as an XAI to improve the interpretability and 

reliability of model results. The SHAP (Shapley Additive exPlanations) Python 

package helps to understand the impact of each feature on model predictions by 

calculating SHAP values (Štrumbelj and Kononenko, 2014; Li, 2022) and 

providing visualizations through various graphs, such as summary plots and 

individual feature importance ('force') plots (Wang et al., 2023). 

3.4.1 Model Agnostic and Model Specific Interpretations 

There are two different approaches to interpretability, model-specific and model-

agnostic (Molnar, 2020). Model-specific interpretations are designed specifically 

for models and only for that type of model, with the goal of representing the 

internal structure. Some basic illustrations are; linear regression coefficients and 

smooth operating principles in a generalized additive model (Li, 2022). More 

complex models also take advantage of model agnostic interpretation, such as 

examining the activation of neurons and layers to see which parts of the image 

contribute to the final classification (e.g., Shrikumar, Greenside, & Kundaje, 2017; 

Simonyan, Vedaldi, & Zisserman, 2013; Yosinski, Clune, Nguyen, Fuchs, & 

Lipson, 2015). Model agnostic interpretation means that this methodology can be 

applied to any machine learning model, and generally does not represent the 

internal structure of the model. A deep understanding of the internal structure of 

the model is not required to understand the results of the model agnostic approach 

(Li, 2022). 
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SHAP's model-agnostic behavior allows it to be applied to any machine learning 

model, making it a valuable tool for increasing model transparency and 

understanding feature contributions. SHAP represents the direct influence of 

features on the prediction with the same unit as the output. Several studies have 

started to take advantage of SHAP (Ribeiro et al., 2016; Štrumbelj and Kononenko, 

2014; Parsa et al., 2020). SHAP also has great potential for machine learning 

model discovery, especially for spatial data. Each observation in the training and 

test datasets has a unique geographic location (Li, 2022). 

3.4.2 Understanding the Meaning of SHAP Features Importance 

SHAP importance is quantified at the row level and reflects the contribution of a 

feature in making a particular prediction, considering other given features for that 

prediction, relative to the average prediction. This measure includes both the 

direction and the magnitude of the influence of the feature. In practice, SHAP 

importance is often presented in absolute terms for interpretation and comparison 

during model training (Molnar, 2020). SHAP scores highly effected by variation of 

given feature therefore reducing variation will reduce the effects of given feature. 

3.4.3 Feature Importance Heatmap 

The method of assessing the essential features in a machine learning model output 

is called Feature Importance (Musolf et al., 2022; Khan et al., 2020). Visual 

representations of the filtered SHAP Feature Importance (FI) scores for each daily 

model are provided as heatmaps for each year, showing similar patterns. XGBoost 

assigns zero importance to irrelevant features, so XGBoost's heatmaps contain a 

large amount of dark blue color (Appendix A SHAP Feature Importance scores as 

heatmap). 
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3.4.4 Merging SHAP Absolute Mean Plots 

In this study, the RF and XGBoost models are trained on a daily basis. Absolute 

mean SHAP values are calculated to obtain an overall importance of each feature 

over the entire study period, i.e., 2015-2022, to provide a complete overview of the 

collective impact of the features in the RF and XGBoost models. The average 

importance of the filtered daily SHAP values is calculated to represent the 

importance of the features. 

3.4.5 Variation of Descriptor Importance in Space 

Filter used to pre-select the data prior to generating the descriptor importance 

variation plots. The following key static features were selected to examine their 

spatial variation in descriptor importance: Elevation, Distance to Coast, Latitude, 

and Longitude. Then, for all models from 2015 to 2022, the feature values and their 

corresponding SHAP values were sorted and plotted with respect to the magnitude 

of the feature value and the associated season. 

SHAP values are used to explain the positive and negative contributions of each 

feature. A SHAP value of 0 indicates no effect and is highlighted in red along the 

y-axis. The median SHAP value is shown as a line extending from the 25th to the 

75th percentile SHAP value. It describes the central tendency and variability of 

feature importance. 

In order to investigate the seasonal dynamics in more detail, the present analysis 

focused on the two most important seasons: summer and winter. For this reason, 

the importance of selected static features was evaluated in terms of seasonal 

representativeness. This can be used as a basis for a fine-grained interpretation of 

how static features contribute to model performance in different seasonal contexts. 

This approach allows for a more detailed interpretation of the spatial and temporal 

dynamics of feature contribution to model prediction. 
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3.5 Summary of the Methodology Utilized in This Study 

Satellite Precipitation Products (SPPs) have exhibited bias that have seriously 

limited their ability to reflect the true patterns and spatial distribution of 

precipitation. On the other hand, ground observations are very precise data at a 

specific location. This study aims to correct the bias in IMERG late precipitation 

data over Turkiye using environmental data and ground observations with machine 

learning algorithms.  

The supervised machine learning algorithms Random Forest and XGBoost, known 

for their success in bias correction, are used to capture the complex relationships 

between precipitation and various other environmental parameters. The selected 

features included in the models are: climate class of a given location, facet, 

elevation, distance from the coast, effective terrain height, IMERG data, liquid 

precipitation probability, and geographic coordinates (longitude and latitude). In 

this study, 5-fold cross-validation with Bayesian optimization was used to fine-tune 

the models, improve model generalization, and more reliably capture complex 

relationships in the input data. 

Evaluations and comparisons are then made based on metrics such as KGE, R2, 

CSI, POD, FAR, and SHAP values. SHAP explainers are used to improve model 

reliability by providing a better understanding of the contribution of features and 

behaviors in the model. By combining the SHAP values of the daily models, the 

overall effects and the effects of spatial and temporal features are also analyzed 

through different types of plots. 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

This chapter evaluates the performance of machine learning algorithms in bias 

correction of the IMERG precipitation product. The contributions of each feature 

were analyzed with different SHAP graphs. 

4.1 Evaluation of Bias Correction Algorithms 

Different metrics are calculated for each model, then their mean, median and 

standard deviation (Std) values between 2015 - 2022 are listed in Table 4.1. All 

metrics are filtered and calculated from test data. 

Table 4.1. Effectiveness Metrics Evaluation between 2015-2022 

 

Mean -2.09 Mean -0.28 Mean 7.08

Median -0.16 Median 0.07 Median 5.90

Std 8.69 Std 1.29 Std 4.70

Mean 0.47 Mean 0.46 Mean 4.00

Median 0.49 Median 0.48 Median 3.34

Std 0.25 Std 0.22 Std 2.60

Mean 0.33 Mean 0.47 Mean 4.33

Median 0.40 Median 0.51 Median 3.58

Std 0.63 Std 0.28 Std 2.86

Mean 1.26 Mean 1.28 Mean 0.48

Median 0.98 Median 0.94 Median 0.50

Std 1.15 Std 1.22 Std 0.24

Mean 0.62 Mean 0.99 Mean 0.71

Median 0.61 Median 0.97 Median 0.74

Std 0.19 Std 0.22 Std 0.17

Mean 0.77 Mean 0.99 Mean 0.65

Median 0.75 Median 0.97 Median 0.68

Std 0.31 Std 0.23 Std 0.19

XGBoost XGBoost XGBoost

RF RF

RF RF RF

Filtered 

IMERG

Filtered 

IMERG

Filtered 

IMERG

R2 KGE

Alpha Beta r

XGBoost XGBoost

RMSE

Filtered 

IMERG

RF

XGBoost

Filtered 

IMERG

Filtered 

IMERG



 

 

48 

4.1.1 Coefficient of Determination 

Table 4.1 shows the coefficient of determination values of the filtered IMERG and 

the machine learning models. The average R² for IMERG data from 2015 to 2022 

was -2.09, which shows a very high inconsistency between IMERG estimates and 

ground observations, suggesting that filtered IMERG is underperforming in terms 

of using the mean of observed precipitation. This also reflects the inability of 

IMERG to accurately capture the spatial distribution of precipitation. The standard 

deviation of 8.69 explains that there is a high inconsistency and variability in the 

predictions given by IMERG. In contrast, the mean R² values for Random Forest 

and XGBoost are 0.47 and 0.33, respectively, indicating that, on average, the 

inclusion of environmental features and the use of machine learning models 

significantly improve the accuracy of satellite-based precipitation estimates over 

the stand-alone IMERG estimate. 

4.1.2 KGE and Its Components 

Table 4.1 shows the KGE and its components with the mean, median, and standard 

deviation of each daily model and the corresponding filtered IMERG using test 

data between 2015 and 2022. 

The overall mean (median) KGE of IMERG, Random Forest, and XGBoost are -

0.28(0.07), 0.46(0.48), and 0.47(0.51), respectively. This indicates that the machine 

learning algorithms significantly improve the precipitation estimates over the 

original IMERG product. The positive KGE scores of the machine learning models 

indicate that these models are better at capturing precipitation variability while 

being able to improve forecast accuracy. Similarly, the higher median KGE of 

XGBoost indicates that it generally outperforms Random Forest, although the mean 

score is slightly lower due to some outliers. It should be noted that the complex 

structure of precipitation and the lower amount of precipitation on some days 
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lowers the score. The models are found to be very efficient on rainy days, 

achieving KGE values of around 0.7 - 0.9.  

Table 4.2 shows R2 and KGE values of some daily models with corresponding 

precipitation amounts to further investigate the sensitivity of the model results. Day 

column of the table shows year and day number of that year starting from 0 (0 

corresponds to January 1). Train column shows the number of stations with 2 

mm/day or more precipitation on that day. The Obs column shows the total amount 

of precipitation in mm/day for that day. Other columns show scores for IMERG, 

Random Forest, and XGBoost, respectively. The KGE scores also show that the 

models perform better for high amounts of stations with 2mm/day or more. 
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Table 4.2. R2 and KGE scores and corresponding precipitation amounts 
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The KGE scores of the models were compared on a daily basis using only the test 

stations in figure 4.1. showing filtered models test KGE values. the x-axis is for 

Random Forest scores and the y-axis is for XGBoost scores. It has a red line 

showing 1:1 correspondence. The plot here shows the overall superior performance 

of XGBoost since most points lie above the red line.  

 

Figure 4.1. KGE score comparison of Random Forest and XGBoost models for 

each year by selecting days only having more than 25 station with 2mm/day or 

higher precipitation value 

Figure 4.2 shows the violin plots of the filtered KGE and its components over the 

period 2015-2022.Comparisons of the KGE scores show that, on average, XGBoost 

is associated with a higher distribution and a higher mean score compared to 

Random Forest, and with a greater dispersion of anomalies. The higher anomalies 

observed with XGBoost can be better explained by its increased sensitivity to 

change and the fact that it is much more responsive to the IMERG data. As a result, 

XGBoost is able to capture certain complex patterns. 

The correlation scores compare the two models, and Random Forest has a better 

mean and overall correlation, with a smaller distribution. XGBoost understands 

more about variability (alpha) than Random Forest, while both have almost the 
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same bias correction (beta). The KGE graph shows that the XGBoost bias 

correction simulation outperforms Random Forest, mainly due to the improvement 

in variability. The main reason for XGBoost's exceptional performance is that it 

captures the variability (alpha) in the data, which improves model performance in 

fluctuating precipitation patterns and shows that models are better at learning 

complicated relationships. 

 

 

Figure 4.2. KGE and component analyses between 2015-2022 

4.1.3 Root Mean Squared Error 

Table 4.1 shows the RMSE values, where the mean (median) values for IMERG, 

RF, and XGBoost models are 7.08 (5.90), 4.00 (3.34), and 4.33 (3.58), 

respectively, with Random Forest and XGBoost performing almost identically. The 

performance comparison underscores the superiority of machine learning models in 

terms of predictive accuracy, reducing the average RMSE by approximately 3 

mm/day. The minimal performance difference between Random Forest and 
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XGBoost further underscores the efficiency of each model, given the significant 

performance difference for both models with respect to the filtered IMERG. 

4.1.4 Evaluation of Models’ Performance for Precipitation Events and 

Extreme Precipitation Events 

Tables 4.3 and 4.4 show the POD scores for filtered IMERG, Random Forest and 

XGBoost. Filtered IMERG scores decrease significantly with increasing 

precipitation thresholds, indicating that struggles to predict extreme events. 

Random Forest performs better at lower precipitation thresholds (POD1 and 

POD2). The POD5 scores of both models are very similar and XGBoost is better at 

predicting extreme events. All scores decrease as the precipitation threshold 

increases. Overall, these two machine learning algorithms, Random Forest and 

XGBoost, provide a significant improvement over filtered IMERG in predicting 

precipitation events. 

Table4.3. Probability of Detection scores of filtered IMERG and machine learning 

models in general precipitation events (thresholds 1,2, and 5 mm/day) 

 

Table 4.4. Probability of Detection scores of filtered IMERG and machine learning 

models in extreme precipitation events (thresholds 10,20, and 50 mm/day) 

 

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 0.476 0.590 0.550 0.430 0.507 0.484 0.391 0.408 0.389

2016 0.488 0.649 0.601 0.467 0.624 0.587 0.430 0.492 0.483

2017 0.480 0.654 0.614 0.446 0.591 0.579 0.384 0.450 0.457

2018 0.604 0.713 0.665 0.548 0.601 0.571 0.482 0.431 0.449

2019 0.576 0.692 0.645 0.563 0.652 0.615 0.446 0.457 0.480

2020 0.526 0.668 0.628 0.490 0.627 0.613 0.397 0.476 0.500

2021 0.502 0.711 0.680 0.449 0.638 0.600 0.377 0.462 0.470

2022 0.459 0.685 0.628 0.407 0.593 0.566 0.343 0.427 0.418

Average 0.514 0.670 0.626 0.475 0.604 0.577 0.406 0.450 0.456

Year

POD1 POD2 POD5
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Tables 4.5 and 4.6 show the FAR scores of the filtered IMERG and machine 

learning models. At all thresholds, filtered IMERG FAR scores are high, ranging 

from a low of 0.522 at the lowest threshold (FAR1) to a high of 0.867 at the highest 

threshold (FAR50). Filtered IMERG over predicts precipitation especially at high 

thresholds indicating errors in precipitation reports. For both models, the correction 

for false reports is very significant. Random Forest FAR scores are lower than 

XGBoost for general precipitation events (FAR1, FAR2, and FAR5) and almost 

equal for extreme precipitation events (FAR10, FAR20, and FAR50). Random 

forest reduces false alarms better than XGBoost. 

Table 4.5 False Alarm Ratio scores of filtered IMERG and machine learning 

models in general precipitation events (thresholds 1, 2, and 5 mm/day) 

 

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 0.337 0.270 0.310 0.286 0.214 0.305 0.282 0.204 0.296

2016 0.327 0.353 0.381 0.287 0.260 0.313 0.156 0.252 0.235

2017 0.304 0.306 0.344 0.297 0.204 0.234 0.288 0.136 0.136

2018 0.440 0.324 0.374 0.400 0.217 0.253 0.269 0.051 0.237

2019 0.368 0.338 0.402 0.275 0.289 0.311 0.294 0.184 0.476

2020 0.331 0.307 0.365 0.255 0.179 0.312 0.370 0.282 0.442

2021 0.313 0.362 0.395 0.282 0.247 0.279 0.194 0.194 0.222

2022 0.221 0.302 0.327 0.162 0.246 0.273 0.078 0.170 0.170

Average 0.330 0.320 0.362 0.281 0.232 0.285 0.241 0.184 0.277

Year

POD10 POD20 POD50

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 0.537 0.422 0.439 0.562 0.409 0.410 0.580 0.328 0.382

2016 0.510 0.373 0.389 0.518 0.326 0.370 0.536 0.277 0.357

2017 0.530 0.390 0.391 0.523 0.335 0.400 0.566 0.288 0.440

2018 0.510 0.393 0.418 0.534 0.377 0.410 0.600 0.344 0.397

2019 0.543 0.395 0.392 0.542 0.354 0.383 0.592 0.318 0.361

2020 0.541 0.409 0.447 0.539 0.359 0.368 0.590 0.307 0.402

2021 0.507 0.372 0.398 0.506 0.353 0.372 0.533 0.284 0.362

2022 0.493 0.434 0.484 0.517 0.373 0.425 0.579 0.355 0.460

Average 0.522 0.399 0.420 0.530 0.360 0.392 0.572 0.313 0.395

FAR1

Year

FAR2 FAR5
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Table 4.6 False Alarm Ratio scores of filtered IMERG and machine learning 

models in extreme precipitation events (thresholds 10,20, and 50 mm/day) 

 

The CSI scores of filtered IMERG with machine learning models are shown in 

Tables 4.7 and 4.8. Filtered IMERG has a very poor ability to predict precipitation 

events and its accuracy decreases as the precipitation threshold increases. In 

comparison, Random Forest has a better ability to predict precipitation events, 

especially for the lower precipitation thresholds (CSI1 and CSI2). The CSI5 scores 

between Random Forest and XGBoost are almost identical. XGBoost actually 

performs slightly better for extreme precipitation events. Both models significantly 

improve the CSI scores of filtered IMERG and precipitation event prediction. 

Table 4.7  Critical Success Index of filtered IMERG and machine learning models 

in general precipitation events (thresholds 1,2, and 5 mm/day) 

 

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 0.653 0.013 0.014 0.775 0.002 0.003 0.896 0.000 0.000

2016 0.670 0.015 0.017 0.762 0.003 0.004 0.928 0.000 0.000

2017 0.646 0.012 0.013 0.739 0.002 0.003 0.855 0.000 0.000

2018 0.680 0.015 0.019 0.766 0.003 0.004 0.889 0.000 0.001

2019 0.677 0.011 0.014 0.740 0.003 0.005 0.782 0.000 0.001

2020 0.671 0.009 0.013 0.794 0.002 0.003 0.834 0.000 0.000

2021 0.600 0.012 0.014 0.706 0.002 0.005 0.870 0.000 0.000

2022 0.684 0.014 0.016 0.795 0.003 0.004 0.880 0.000 0.001

Average 0.660 0.013 0.015 0.760 0.002 0.004 0.867 0.000 0.000

FAR10 FAR20 FAR50

Year

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 0.297 0.383 0.374 0.262 0.349 0.350 0.232 0.323 0.304

2016 0.299 0.450 0.429 0.274 0.463 0.429 0.248 0.398 0.378

2017 0.285 0.446 0.440 0.273 0.448 0.433 0.223 0.353 0.335

2018 0.355 0.470 0.449 0.309 0.426 0.405 0.255 0.332 0.334

2019 0.327 0.461 0.456 0.316 0.462 0.448 0.238 0.356 0.362

2020 0.300 0.435 0.412 0.276 0.448 0.439 0.220 0.375 0.375

2021 0.303 0.491 0.467 0.273 0.469 0.442 0.231 0.372 0.363

2022 0.283 0.440 0.398 0.253 0.422 0.392 0.193 0.322 0.303

Average 0.306 0.447 0.428 0.280 0.436 0.417 0.230 0.354 0.344

Year

CSI1 CSI2 CSI5
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Table 4.8 Critical Success Index of filtered IMERG and machine learning models 

in extreme precipitation events (thresholds 10,20, and 50 mm/day) 

 

The bias scores of the filtered IMERG and the machine learning models are shown 

in Tables 4.9 and 4.10. Filtered IMERG scores greater than 1 represent very high 

event overestimation up to the highest precipitation threshold. Overestimation 

decreases with increasing precipitation thresholds, indicating less accuracy at lower 

precipitation levels. For general precipitation events (Bias1, Bias2, and Bias5), the 

bias scores for XGBoost and Random Forest generally have similar values, 

indicating that their effects are quite close within these ranges. On the contrary, 

Random Forest shows a strong underestimation for extreme precipitation events 

(Bias10, Bias20 and Bias50) and the bias score decreases as the thresholds increase 

to the lowest of 0.238 for Bias50, meaning that it strongly underestimates extreme 

event occurrence compared to XGBoost. 

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 0.180 0.225 0.243 0.122 0.185 0.251 0.073 0.184 0.255

2016 0.176 0.292 0.290 0.118 0.232 0.251 0.044 0.237 0.193

2017 0.163 0.250 0.277 0.124 0.179 0.198 0.088 0.091 0.091

2018 0.197 0.270 0.284 0.148 0.188 0.186 0.078 0.038 0.145

2019 0.179 0.276 0.308 0.129 0.236 0.228 0.137 0.181 0.388

2020 0.168 0.260 0.274 0.097 0.149 0.214 0.114 0.268 0.374

2021 0.167 0.310 0.322 0.147 0.219 0.210 0.089 0.194 0.179

2022 0.130 0.242 0.247 0.079 0.211 0.205 0.030 0.154 0.127

Average 0.170 0.266 0.281 0.120 0.200 0.218 0.082 0.169 0.219

Year

CSI10 CSI20 CSI50
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Table 4.9 Bias Score of filtered IMERG and machine learning models in general 

precipitation events (thresholds 1,2, and 5 mm/day) 

 

Table 4.10 Bias Score of models of filtered IMERG and machine learning models 

in extreme precipitation events (thresholds 10,20, and 50 mm/day) 

 

Table 4.11 shows the MBE scores of the filtered IMERG and machine learning 

models. Filtered IMERG overestimates its predictions, while Random Forest and 

XGBoost have similar performance with very low underestimation, indicating 

overall model success. 

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 1.479 1.138 1.043 1.302 0.916 0.855 1.149 0.625 0.637

2016 1.376 1.109 1.036 1.177 0.987 0.980 1.252 0.715 0.801

2017 1.586 1.142 1.043 1.304 0.910 0.964 1.063 0.668 0.797

2018 1.531 1.264 1.204 1.461 1.007 1.005 1.347 0.697 0.774

2019 1.657 1.268 1.097 1.664 1.048 1.031 1.400 0.684 0.810

2020 1.314 1.183 1.059 1.397 1.006 0.973 1.184 0.725 0.814

2021 1.324 1.234 1.138 1.080 1.014 0.976 1.060 0.683 0.785

2022 1.432 1.321 1.174 1.119 0.999 0.956 1.144 0.694 0.778

Average 1.462 1.207 1.099 1.313 0.986 0.968 1.200 0.686 0.774

BIAS2 BIAS5

Year

BIAS1

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

Filtered 

IMERG
RF XGBoost

2015 1.318 0.399 0.568 1.319 0.287 0.442 0.889 0.249 0.396

2016 1.207 0.501 0.663 1.230 0.359 0.476 0.700 0.252 0.310

2017 1.010 0.451 0.601 1.034 0.273 0.381 0.848 0.273 0.386

2018 1.785 0.468 0.642 1.460 0.301 0.455 0.788 0.090 0.449

2019 1.407 0.480 0.659 1.133 0.423 0.548 0.757 0.188 0.647

2020 1.132 0.456 0.682 1.127 0.271 0.607 0.724 0.318 0.523

2021 1.001 0.497 0.589 0.841 0.333 0.500 0.630 0.306 0.333

2022 0.933 0.502 0.655 0.788 0.332 0.557 0.195 0.225 0.291

Average 1.224 0.469 0.632 1.116 0.322 0.496 0.691 0.238 0.417

Year

BIAS10 BIAS20 BIAS50
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Table 4.11 Mean Bias Error scores of filtered IMERG and machine learning 

models (mm/day) 

 

In summary, the Random Forest and XGBoost models significantly improved the 

detection performance of IMERG. Although the performance of Random Forest 

and XGBoost decreases for extreme events (Senocak et al., 2023), XGBoost is 

better at predicting extreme events. Random forest significantly underestimates 

extreme events. 

4.2 Evaluation of Machine Learning Algorithms, Environmental Features 

effects on Complex Topography and Shapley Related Graphs 

The SHAP library provides an invaluable feature of plotting different graphs, 

making models user-friendly, easy to understand, and accountable. After 

calculating Shapley scores by Tree SHAP (Lundberg et al., 2020), plotting these 

scores in different ways creates new perspectives for users and is more reliable. 

4.2.1 Feature Importance Heatmap 

Figure 4.3 shows an example heatmap of Random Forest for the year 2018. 

(Appendix A: SHAP features importance scores as heatmap for Random Forest and 

Filtered 

IMERG
RF XGBoost

2015 0.298 -0.129 -0.129

2016 0.169 -0.045 -0.046

2017 0.103 -0.070 -0.079

2018 0.665 -0.063 -0.054

2019 0.278 -0.061 -0.066

2020 0.201 -0.053 -0.051

2021 -0.019 -0.079 -0.084

2022 -0.117 -0.043 -0.058

Average 0.197 -0.068 -0.071

MBE

Year
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XGBoost between 2015-2022). The top blue and white heatmap represents rainy 

days. Observation data are checked for precipitation values greater than 2mm/day, 

and then the number of stations greater than 2mm/day are counted and grouped to 

be displayed in a heatmap. Dark blue-purple color represents more than 200 

stations with more than 2 mm/day, blue color represents nearly 100 stations, and 

white color represents 0 or nearly 0 stations. The lower heatmap reflects the order 

of importance of each feature, color coded to clearly show their impact on the daily 

models, with red representing the most important features, cyan the medium and 

dark blue the least important features. The lower heatmap is also filtered to 25 or 

more stations with 2mm/day or more precipitation to represent the temporal 

distribution of the models used in the metric evaluations and to get more 

representative results about the importance of the model features. 

Topographic features are highly effective on precipitation-related model 

predictions (Senocak et al., 2023) and IMERG, Latitude, Longitude, Elevation, 

Distance to Coast, and Effective Terrain Height are the most important features for 

each day (red) throughout the year, showing the importance of topographic 

features. Other features such as facet effects are very small in the model output. 

IMERG is selected as one of the most important features for almost all models. 

Senocak et al (2023) show in their forecasting study that different machine learning 

models, including XGBoost and Random Forest, consider numerical weather 

prediction (NWP) models as the most important feature.  

In winter and near-winter periods, the probability of liquid precipitation becomes 

essential, although precipitation isn't always in liquid form. Conversely, in summer, 

the probability of liquid precipitation does not vary (always 1), making it the least 

important variable. As can be seen in Figure 4.3, the climate classes and facet 

values do not significantly change the prediction results. However, the Random 

Forest and XGBoost models reduce the dimensions for unrelated features by 

assigning them an importance of 0, thus mitigating any potential problems these 

features could pose to the model results. Daily changes in feature importance for 

different models are evaluated by this graph. 
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Figure 4.3. SHAP RF Feature Importance scores as heatmap 2018 
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4.2.2 SHAP Absolute Mean Graphs 

SHAP values quantify the impact of each feature on the model's prediction, 

including both positive and negative contributions. Figure 4.4 shows the average 

feature values of all samples generated for the day 2018-11-16. This indicates how 

significant they are in the model. Consistent results between training and testing 

confirm the reliability of the models. Most notably, Random Forest and XGBoost 

give the highest priority to IMERG precipitation data, which is likely to signal 

logical predictions. Topographic features such as elevation, ETH, latitude, and 

longitude have significant effects that correlate with the Senocak et al. (2023) 

study, suggesting that model bias are corrected according to environmental 

relationships. 

 

Figure 4.4. SHAP absolute mean plots (Feature Importance) for Random Forest (a) 

Train dataset, (b) Test dataset and XGBoost (c) Train Dataset (d) Test Dataset 

(selected day: 16/11/2018) 
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4.2.3 Merging SHAP Absolute Mean Plots 

The average of the daily absolute mean SHAP scores for filtered days is calculated 

from the test scores for each feature to represent the overall effect of the features. 

This usage also reduces the daily noise that may affect an individual model. Studies 

show that provided features may be used differently by different models. (e.g., 

Senocak et al., 2023). Figure 4.5 shows the absolute mean SHAP plot from 2015 to 

2022, plotted as a bar graph to provide a representation of the overall effect of 

features on model outputs and to show how models use these features together. 

Features are generally static and their variability does not change from day to day. 

The most important features are IMERG, Distance to Coast (DC), Latitude (Lat), 

Longitude (Long), Elevation (Elv), and Effective Terrain Height (ETH). In general, 

the contribution of the features is slightly different. XGBoost gives more weight to 

IMERG SHAP when calculating output values. The overall high importance of 

XGBoost SHAP is due to the strong influence of IMERG on XGBoost predictions.  

 

Figure 4.5: Absolute Mean SHAP values for most important features and model 

comparison from 2015 – 2022 
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4.2.4 Variation of Descriptor Importance in Space 

Figure 4.6 and Figure 4.7 show the variation of descriptor importance in space for 

Random Forest and XGBoost models separately for filtered days corresponding 

summer season. 

Summers in the Mediterranean and Central Anatolian regions are hot and dry with 

minimal precipitation (Sensoy et al., 2008). Latitude SHAP plot analysis shows 

that the models correctly capture this aridity in these regions, as indicated by their 

low precipitation predictions in the summer season. The SHAP values for these 

latitudes are slightly negative, indicating a decrease in predicted precipitation. On 

the other hand, the positive SHAP values at higher latitudes indicate that the 

models have captured the generally high amount of precipitation in the Black Sea 

region. 

The SHAP plots for longitude show that the models tend to increase their 

precipitation over the western area during the summer months. More specifically, 

the models give positive SHAP values for the western parts of the study area, 

increasing model predictions of precipitation, and negative SHAP values for the 

eastern regions, corresponding to a reduced effect in that area. 

The SHAP plots for elevation show that the predictions for both models increase 

with increasing elevation. Overall, this suggests that the models are capturing a lot 

of variation that is positively correlated between precipitation and elevation, 

indicating that the models are successfully correlating precipitation and elevation 

values. 

Distance to coast values have mostly similar contribution in predicting 

precipitation during summer months as shown in the SHAP plot, this could perhaps 

be explained by the dry climatic conditions that normally characterize the 

Mediterranean region in summer, thus reducing the overall impact of distance to 

coast on summer precipitation. 
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Figure4.6. Variation of Descriptor Importance in Space (Summer Season) for 

Random Forest Model 

 

Figure 4.7. Variation of Descriptor Importance in Space (Summer Season) for 

XGBoost Model 

Figure 4.8 and figure 4.9 show variation of descriptor importance in space for 

Random Forest and XGBoost models separately for filtered days corresponding 

winter season. 
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The Mediterranean and Black Sea regions receive high amounts of precipitation 

during the winter season (Sensoy et al., 2008). This can be easily seen from the 

latitude SHAP plots of the models. The models also detect the dry plateau in the 

Central Anatolian region by giving a negative effect to values corresponding to this 

plateau, indicating the ability of the models to learn complex relationships in the 

data. 

Sensoy et al. (2008) showed with the seasonal precipitation distribution map of 

Turkiye that the study area does not have a significant change in the east-west 

directions of precipitation in winter. Considering the longitude SHAP values in 

winter indicates that the precipitation falling in the study area does affect the 

longitude significantly. 

Analysis of the Elevation SHAP plots in different seasons shows that the models 

can capture the correlation between precipitation and elevation without 

distinguishing between summer and winter seasons. 

Winter is a season of precipitation for the Black Sea and Mediterranean regions 

(Sensoy et al., 2008). Therefore, the distance to coast feature ended up being more 

informative for the models in winter seasons. The machine learning models are 

able to capture more precipitation along the coasts and assign them positive SHAP 

values. The fact that the models can play with the influence of the Distance to 

Coast feature according to seasonal variations further proves their ability to 

efficiently handle the complex relationships within the data. 
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Figure 4.8. Variation of Descriptor Importance in Space (Winter Season) for 

Random Forest Model 

 

Figure 4.9. Variation of Descriptor Importance in Space (Winter Season) for 

XGBoost Model 
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4.2.5 Potential SHAP Limitations and Their effects in this study 

Representing feature importance with SHAP scores has some inherent limitations 

that can lead to misleading results if not handled carefully. High correlations of 

complex features and training set bias distort the interpretation of SHAP. Looking 

at feature dependencies helps, but does not solve the problem that SHAP scores are 

affected by complex feature combinations. These challenges are partly overcome 

by the intentional selection of the model in this study to be able to handle 

correlated data efficiently; thus, this study narrows its focus to tree-based models 

such as regression trees, random forests, and XGBoost, which are better able to 

handle such complexity (Rabinowicz & Rosset, 2022). Furthermore, high 

correlations between features can mislead SHAP scores and lead to 

misinterpretation of feature importance. The first method used in this area is to fool 

SHAP algorithms by creating perturbations in the background distribution 

(Baniecki & Biecek, 2022). They used genetic algorithms to manipulate the 

background data and influence the calculation and interpretation of SHAP scores to 

illustrate how correlations can affect SHAP scores and their reliability. This study 

addresses these issues through data preparation, noise reduction, correlation testing, 

and strategic model selection of tree-based models to ensure the representational 

and reliable nature of SHAP scores. 
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CHAPTER 5  

5 CONCLUSIONS AND RECOMMENDATIONS 

Precipitation is a tremendous gear in the climate and water cycle system (Kidd and 

Huffman, 2011). The sustainability of water resource management and agricultural 

studies depends on precipitation measurements (Hui-Mean et al., 2018; Kidd et al., 

2009; Thornes et al., 2010; Kidd and Huffman, 2011; Zhou et al., 2022). Accurate 

precipitation data contribute to a better representation of precipitation patterns and 

water availability. 

This study suggests that bias correction IMERGLate satellite product with ground-

based observations and environmental parameters such as elevation, effective 

terrain height, latitude, longitude, distance to coast to improve its spatial 

representation. Bias correction is an important issue, and there is increasing interest 

in using machine learning algorithms for bias correction due to their efficiency 

(Zeng et al., 2021; Wang et al., 2020; et al., 2021b; Lao et al., 2021). Tree-based 

machine learning models propose more interpretable and predictive accuracy 

compared to traditional models (Başağoğlu et al., 2022; Chakraborty et al., 2021a; 

Chang et al., 2016; Dumitrescu et al., 2021). In this study, random forest (RF) 

(Breiman, 2001) and extreme gradient boosting (XGBoost) (Chen and Guestrin, 

2016) tree-based machine learning algorithms are used to train the daily model. 

Machine learning models have been proven to recognize complex structures and 

patterns from large amounts of structured and unstructured data (Li, 2022). The 

eXtreme Gradient Boosting (XGBoost) method is characterized by its remarkable 

ability to capture complex and nonlinear relationships between precipitation and 

environmental features (Ali et al., 2023; Zhu et al., 2023). 

The performance of the machine learning models is evaluated in chapter 4. The 

models were filtered to show their performance meaningfully. The models 
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outperformed on negative R2 values of filtered IMERG. XGBoost performed 

slightly better on KGE due to the alpha value. Mean Bias Error of Random Forest 

(-0.068 mm/day) and XGBoost (-0.071 mm/day) shows both models slightly 

underestimate precipitation events. While filtered IMERG (0.197 mm/day) 

overestimates. The overall performance of the models is ensured with these 

metrics, and then the models are evaluated with thresholds to analyze their specific 

event performance. The Probability of Detection scores show that Random Forest 

is better at predicting small events (1 mm/day, 2 mm/day). The XGBoost models 

are more effective at higher thresholds (10 mm/day and above), demonstrating their 

reliability in detecting larger peak events. IMERG achieves high FAR scores, 

which increase at higher thresholds. The machine learning models reduce the 

scores. The bias score of extreme thresholds (Bias10, Bias20 and Bias50) shows 

that Random Forest (0.469, 0.322, and 0.238) underestimates extreme event 

occurrence compared to XGBoost (0.632, 0.496, and 0.417). IMERG overestimates 

precipitation events. Both models improve the CSI. Random Forest performs better 

for the lower precipitation thresholds (CSI1 and CSI2). XGBoost performs better 

for extreme precipitation events (CSI10 and above). 

Machine learning models are referred to as black boxes due to their complex 

decision-making processes (Li, 2022). The concept of Explainable Artificial 

Intelligence makes model decisions transparent and explains how input data is 

transformed into output (Li, 2022). Models with SHAP (Shapley Additive 

Explanation) (Lundberg and Lee, 2017; Lundberg et al., 2020) are among the best 

approaches to explain feature contributions in models (Li, 2022). SHAP draws a 

relationship between input and output values, showing how features are mostly 

used by the model during the prediction step and influence the outcome (Li, 2022).  

The SHAP feature importance scores of the daily models are plotted annually in the 

form of a heat map to show their impact.  From the heatmaps, the most important 

features were IMERG, latitude, longitude, elevation, distance to coast, and 

effective terrain height. The least important features are facets and climate zones. 
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The probability of liquid precipitation affected the models only in winter seasons, 

because in summer its value is always 1.  

The interpretation of important features by the models was analyzed using the 

combination of absolute mean SHAP plots. The mean SHAP plots of the XGBoost 

models had higher importance scores than the IMERG. To compensate for this, the 

mean SHAP values of XGBoost are assumed to be slightly higher than those of 

Random Forest. 

Series of combinations of 2015-2022 SHAP values with variation of descriptor 

plots are created separately for the summer and winter seasons of the Random 

Forest and XGBoost models to show how the models evaluate features in different 

seasons. Note that these procedures are performed first for the models with 25 or 

more stations with 2 mm/day or more precipitation. The results are corrected to 

remove the dry day bias. These features were chosen to be static during the 

combination of SHAP values to avoid the addition of bias and noise. This again 

shows that the complex relationships between features and precipitation data are 

understood by the models. 

Evaluation of variation in descriptor plots. The models can correlate precipitation 

with elevation data regardless of the season. The models understand that the 

summer seasons are dry in the Mediterranean and Central Anatolian regions 

(Sensoy et al., 2008), and this is clearly seen in the latitude and distance to coast 

SHAP plots. In summer, only at high latitude values, which corresponds to the 

Black Sea region, the models detect the amount of precipitation and give positive 

SHAP values, but the models cannot make a high interpretation for the distance to 

coast data in summer. In the winter seasons, we observe that the models increase 

the precipitation in these regions in the latitude SHAP plot, which is understood by 

the fact that precipitation is effective in the Black Sea and the Mediterranean. In 

addition, in the Latitude SHAP plot, the models provide more meaningful 

predictions by decreasing precipitation in locations corresponding to the Central 
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Anatolian region. The Distance to Coast graph has become more meaningful in the 

winter months. 

The results confirm that model training effectively improves the performance of 

IMERG satellite precipitation products with satisfactory statistical results. New 

methods to reduce bias in satellite precipitation products can be further explored. 

More features can be added, or feature engineering will even tune the input 

variables. To illustrate, for further research, feature engineering techniques can be 

used to improve the contribution of these features. Creating synthetic parameters 

by combining these features with elevation, like other contributing numerical 

features, can increase the contribution of these features. Alternatively, another 

numerical feature such as elevation can be considered categorical, including groups 

as low, medium, and high, and then converted to a one-hot coding to use facets and 

climate zones with them. 

Random forests work well for low precipitation and XGBoost works better for high 

precipitation. The combination of both model results may provide a very promising 

approach toward increasing the accuracy of satellite-based precipitation estimates. 
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