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ABSTRACT

MACHINE LEARNING-BASED APPROACH FOR BIAS CORRECTION
OF SATELLITE-BASED PRECIPITATION PRODUCTS USING
ENVIRONMENTAL PARAMETERS AND GROUND TRUTH DATA IN
TURKIYE

Seving, Gokhan
Master of Science, Geological Engineering
Supervisor: Assoc. Prof. Koray Kamil Yilmaz

September 2024, 108 pages

Satellite precipitation data are very important in hydrological studies, but contain
bias. In this study, XGBoost and Random Forest machine learning algorithms are
used to correct the bias with ground observations and environmental parameters

such as distance to the coast and elevation.

The machine learning models were trained daily from 2015 to 2022 with optimal
hyperparameters to obtain the most accurate and robust results and results are
filtered to be more representative on rainy days. Although machine learning models
are generally considered as black box, SHAP values were utilized in this study in
an effort to explain and interpret their behavior by showing the contribution of each
feature to the model prediction and how these contributions change as a function of

space and time.

The performance of the models was examined using different metrics to clearly
explain their strengths and weaknesses. Average RMSE scores of filtered IMERG
(7.08), Random Forest (4.00), and XGBoost (4.33) showing machine learning
models provide a much more accurate prediction because they reduce the average
RMSE of filtered IMERG by about 3 mm/day. Average KGE scores of filtered
IMERG (-0.28), Random Forest (0.46) and XGBoost (0.47) and their positive



improvements of KGE values indicating machine learning models perform better in
capturing precipitation variability and accuracy of predictions. The Average Mean
Bias Error scores of filtered IMERG (0.197) indicates, overestimation of
observations, while Random Forest (-0.068) and XGBoost (-0.071) models slightly
underestimate the observed values. These results shows that the accuracy and
reliability of the prediction performance are improved. It was found that XGBoost
models are better to capture variability in data and predicting extreme precipitation
events (10 mm/day or higher events). Random forest is better at predicting lower

threshold events such as 1 mm/day and 2 mm/day.

The overall behavior of the models is visualized by merging their daily SHAP
values. Machine learning models are consistent with their feature importance
scores (FI) each year and adapt their behavior seasonally. The SHAP analysis
further emphasizes that the models successfully capture the aridity over the
Mediterranean and Central Anatolian regions by providing low summer
precipitation at these latitudes, while positive SHAP values at higher latitudes in
summer translate into increased precipitation in the Black Sea region. The clear
positive correlation of precipitation with elevation is evident in the models, while
the effect of distance from the coast in summer is minimal due to generally dry
climatic conditions. The SHAP analysis also shows that the models capture the
high winter precipitation in the Mediterranean and Black Sea regions, as well as the
dry conditions of the Central Anatolian Plateau. In addition, the models show a
strong seasonal influence of the distance to coast feature on precipitation, with a
superior ability to capture coastal precipitation in winter, demonstrating their

ability to adapt to seasonality.

Keywords: Satellite-based Precipitation, Bias Correction, Machine Learning,
SHAP, Explainable Al
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0z

TURKIYE'DE CEVRESEL PARAMETRELER VE YER GERCEGI
VERILERI KULLANILARAK UYDU TABANLI YAGIS URUNLERININ
HATA DUZELTMESI iCIN MAKINE OGRENME TABANLI YAKLASIM

Seving, Gokhan
Yuksek Lisans, Jeoloji Miihendisligi
Tez Yoneticisi: Dog. Dr. Koray Kamil Yilmaz

Eylul 2024, 108 sayfa

Uydu yagis verileri hidrolojik ¢aligmalar i¢in ¢ok 6nemli olmakla birlikte hatalar
icermektedir. Bu c¢alismada, XGBoost ve Random Forest makine Ogrenimi
algoritmalari, yer gozlemleri ve kiyiya uzaklik, yikseklik gibi cevresel

parametreleri hata diizeltmek igin kullanilmaktadir.

Makine 6grenimi modelleri, en dogru ve saglam sonuglar1 elde etmek i¢in optimum
hiperparametrelerle 2015'ten 2022'ye kadar giinliik olarak egitilmistir ve sonuclar
yagmurlu giinlerde daha temsili olacak sekilde filtrelenmistir. Makine 6grenimi
modelleri genellikle kara kutu olarak kabul edilse de, her bir 6zelligin model
tahminine katkisin1 agiklamak ve yorumlamak amaciyla bu calismada SHAP

degerleri kullanilmistir.

Modellerin performansi, giiglii ve zayif yonlerini net bir sekilde agiklamak igin
farkli metrikler kullanilarak incelenmistir. Filtrelenmis IMERG (7,08), Rastgele
Orman (4,00) ve XGBoost'un (4,33) ortalama RMSE puanlar, filtrelenmis
IMERG'in ortalama hatasini yaklasik 3 mm/giin azalttiklar1 i¢in makine 6grenimi

modellerinin ¢ok daha dogru bir tahmin sagladigin1 gostermektedir. filtrelenmis

vii



IMERG (-0,28), Random Forest (0,46) ve XGBoost'un (0,47) ortalama KGE
puanlar1 ve KGE degerlerindeki olumlu gelismeler, makine 6grenimi modellerinin
yagis degiskenligini ve tahminlerin dogrulugunu yakalamada daha iyi genel
performans gosterdigini ortaya koymaktadir. Filtrelenmis IMERG (1.578), Random
Forest (-0.068) ve XGBoost'un (-0.071) Ortalama Bias Hatalar1 filtrelenmis
IMERG'nin Ortalama Bias Hatas1 (0.197) tahminlerini daha yiiksek belirttigine
isaret etmektedir. Rastgele Orman (-0,068) ve XGBoost (-0,071) modelleri
gozlenen degerleri biraz daha diisik tahmin etmektedir, bu da tahmin
performansinin  dogrulugu ve giivenilirliginin arttigt anlamina gelmektedir.
XGBoost modelleri, verilerdeki degiskenligi yakalamada ve asir1 yagis olaylarim
(10 mm/gun veya daha yiiksek olaylar) tahmin etmede daha iyidir. Rastgele orman,

1 mm/giin ve 2 mm/giin gibi daha diisiik esik olaylarini tahmin etmede daha iyidir.

Modellerin  genel davranigi, glinlik SHAP  degerleri  birlestirilerek
gorsellestirilmistir. Makine 6grenimi modelleri her yil 6zellik 6nem puanlari (FI)
ile tutarhidir ve davraniglarini mevsimsel olarak diizenlerler.SHAP analizi ayrica,
modellerin Akdeniz ve I¢ Anadolu bolgelerindeki kurakligi, bu enlemlerde diisiik
yaz yagislar1 saglayarak basarili bir sekilde yakaladigini, yaz aylarinda daha ytiksek
enlemlerde pozitif SHAP degerlerinin Karadeniz bolgesinde artan yagislara
dontistiigiinii vurgulamaktadir. Yagisin yiikseklikle pozitif korelasyonu modellerde
acikca goriiliirken, yaz aylarinda kiyidan uzakligin etkisi genel olarak kuru iklim
kosullart nedeniyle minimum diizeydedir. SHAP analizi ayrica modellerin Akdeniz
ve Karadeniz bolgelerindeki yiiksek kis yagislarmmin yani sira Orta Anadolu
Platosu'nun kuru kosullarmi da yakaladigim1 gostermektedir. Buna ek olarak,
modeller, kiytya uzaklik o6zelliginin yagis {lizerinde giiclii bir mevsimsel etkisi
oldugunu ve ki aylarinda kiyr yagislarini yakalamada istiin bir kabiliyete sahip
olduklarin1  gostererek mevsimsellige uyum saglama yeteneklerini ortaya

koymaktadir.

Anahtar Kelimeler: Uydu Tabanli Yagis, Hata Diizeltme, Makine Ogrenimi,
SHAP, Agiklanabilir Yapay Zeka
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CHAPTER 1

INTRODUCTION

The aim of this chapter is to introduce the general importance of precipitation and
to inform the reader about the precipitation products and the bias correction to
highlight the background of bias correction of satellite precipitation products with
environmental parameters and ground observations. The importance and objectives

of this study are also given in this chapter.

1.1  Precipitation: Measurement and Applications

Precipitation plays a critical role in the climate system and the water cycle (Kidd
and Huffman, 2011).Precipitation datasets are playing a vital role in the evaluation
of flood risks, conditions of drought, and also the availability of water resources-a
matter concerning both urban and rural areas (Hui-Mean et al., 2018; Kidd et al.,
2009; Thornes et al., 2010; Kidd and Huffman, 2011; Zhou et al., 2022).Measuring
precipitation with high precision is indeed a difficult task, as it is a very complex
process and interacts with so many other parameters. Precipitation has spatio-
temporal heterogeneities that make estimations challenging, due to their variability
in space and time and environmental factors like elevation (Kucera et al., 2013;
Herold et al., 2016). However, despite all these difficulties, the accuracy of
precipitation data is really important from the point of view of disciplines like
hydrology, hydrogeology, climate science, and meteorology (Hobbs, 1989; Ren et
al., 2021).

Various methods are used to estimate precipitation, including gauges, radars and

satellites, all of which have their advantages and limitations. It is clear that direct



point-scale measurements obtained from ground-based observations are limited in
capturing spatial variability (He et al., 2023; Zeng et al., 2018b), while radar and
satellite data are indirect and have their own limitations in terms of accuracy (Derin
and Yilmaz, 2014). As a result, there is increasing interest in algorithms that would
optimally normalize data from these different sources (Zeng et al., 2021; Wang et
al., 2020). Machine learning algorithms have emerged as effective tools to improve
rainfall estimation and prediction (Aghelpour et al., 2020; Guan et al., 2020;
Mohammadi et al., 2021; Hadadi et al., 2022).Some of the recent works apply tree-
based Al algorithms that synthesize ground-based observations with environmental
parameters and satellite-collected precipitation data into enhanced precipitation
fields, incorporating strengths in direct precipitation measurements, spatial
coverage and environmental controls (Basagoglu et al., 2022; Chakraborty et al.,
2021a; Chang et al., 2016; Dumitrescu et al., 2021). Among other things, quality
control and correction of data processing bias are essential steps for these datasets.
In this regard, machine learning algorithms that can handle complex, linear and
nonlinear relationships have shown great potential to improve the accuracy of
precipitation product production (Chivers et al., 2020; Abualigah et al., 2021;
Zhang et al., 2021; Agushaka et al., 2022; Oyelade et al., 2022).

111 Precipitation Products

In the recent years, with the advance in the technology of remote-sensing,
especially with the advances of weather radars and satellites, quantitative
precipitation assessment has become significantly improved (Tang et al., 2020; Shi
et al., 2020). Satellite precipitation products (SPPs) and radar products offer data
with indirect measurement, hence with inherent bias. Radar precipitation products
have higher spatial and temporal resolution within a limited radius and have
improved significantly over the last decades, typically to 1 km and 5 min
(Overeem, Holleman, & Buishand, 2009; Serafin & Wilson, 2000).However, radars
have limited coverage and constructing a homogeneous radar field by combining



neighboring radars is challenging due to several factors, including inter-radar
calibration differences (Patakchi et al., 2023), and they do not have global coverage
(Li et al., 2021a). On the other hand, satellites provide quasi-global coverage and
provide consistent measurements of precipitation across the globe in space and
time (Derin and Yilmaz, 2014).The resolution of satellite-based products varies
depending on the product, for example, the IMERG Late product provides
precipitation with a spatial resolution of 0.1° x 0.1° and a temporal resolution of 30
min (Huffman., 2019; Huffman et al., 2018).The value of SPPs lies in their ability

to very accurately identify broader patterns and trends in weather.

Satellite precipitation products (SPPs) are effective for monitoring global
precipitation, but they provide reduced accuracy at the local scale. They are
essential for regional and global monitoring of precipitation and flood warning,
especially for developing countries where lack of detailed precipitation data is an
issue (Setiawati and Miura, 2016; Hossain and Lettenmaier, 2006). There is an
absolute need for these products for regional and global tracking of precipitation.
SPPs are useful for hydrological research in areas where gauge networks are
inadequate (Xue et al., 2013; Saouabe et al., 2020). Despite their promising
application potential, SPPs usually have many shortcomings in providing accurate
data on hydrology and water resource management at the basin scale (Yong et al.,
2010; Zhou et al., 2022). The strength of SPPs lies in the highly accurate
representation of the spatial distribution of precipitation; however, the ability to
capture fine-scale features and small-scale variability in local rainfall intensity is
limited (Mastrantonas et al., 2019; Zhou et al., 2022). Robust calibration and bias
correction based on ground observations are essential to improve the accuracy of
the SPP. However, bias correction reveals the limitations of these SPPs to

accurately describe precipitation at the local scale.



1.1.1.1  Accuracy of Rain Gauges

Rain gauges are instruments used to quantify the amount of precipitation at a
specific location. The most common method of ground-based precipitation
measurement is the use of rain gauges to estimate punctual precipitation at a single
location (New et al., 2001). These instruments are mainly located outdoors and
either collect precipitation in a container or use a tipping bucket mechanism to
measure precipitation intensity. Precipitation observations from rain gauges are
characterized by exceptional accuracy at the point scale. At the regional scale, the
accuracy of ground stations is compromised by the limited distribution and density
of stations (He et al., 2023; Zeng et al., 2018b). Precipitation is a meteorological
process and the spatial and temporal distribution of precipitation can vary
considerably (Marani, 2005). The complexity of the topography can also influence
this phenomenon. Insufficient distribution of rain gauges hinders the ability to
spatially represent precipitation. Rain gauges provide detailed measurements of
precipitation at the point scale (New et al., 2001). Gauges provide ground point
measurements that promote site validation and bias correction of SPPs (Yang et al.,
2016; Tapiador et al., 2020; Zhou et al., 2022; Tian and Peters-Lidard, 2010).

1.1.1.2  Errorsin Rain Gauges

The rainfall measurement using rain gauges is prone to many types of errors,
affecting both meteorological factors and the actual design of the gauges
themselves. Meteorological conditions such as evaporation, temperature variability,
air turbulence, and wind have been reported to seriously affect the accuracy of
rainfall capture (Robinson and Rodda, 1969; Constantinescu et al., 2007; Sieck et
al., 2007). Also, the type of design of the rain gauge used is critical in measurement
accuracy since some gauges are not designed to capture all forms of precipitation
with equal effect. It is also subjected to bias from air turbulence, flow deflection

and wind effects that may cause smaller raindrops to miss the gauge or be tilted



hence introducing inaccuracies. As each rain gauge measurement contains some
uncertainty due to speed, raindrop size, and finally the design of the gauge itself
(Mueller and Kidder, 1972; Neff, 1977; Folland, 1988; Hanna, 1995; Nespor and
Sevruk, 1999; Chang and Harrison, 2005, Sieck et al., 2007).

Regionally, the accuracy of gauges is reduced due to limitations in distribution and
density (He et al., 20-23; Zeng et al., 2018b). In regions with sparse gauge
distribution, a single gauge often represents thousands or even tens of thousands of
square kilometers (Ibrahim et al., 2015, Zhou et al., 2022). Poor observation
networks affect the quality of rain gauge data. The estimation of precipitation
distribution using a network of ground observations is also limited for the same
reasons (He et al., 2023; Zeng et al., 2018b; Wang et al., 2021).

The improvement in the reliability of gauge data will include the elimination and
correction of the uncertainties related to rain gauge measurements. Further, the
errors can be minimized using the correction factors that consider the various
meteorological variables, such as wind velocity, temperature, and precipitation
intensity and type (Stisen et al., 2012; Hoffmann et al., 2016). The use of a number
of rain gauges in the same area increases the knowledge of the local precipitation
since the precipitation is determined by complicated environmental factors such as

elevation.

1.1.1.3  Satellite Precipitation Products

Satellite-based products can be considered as an alternative to ground-based
observations for precipitation data. Over the last three decades, satellite data have
become a valuable tool for global precipitation monitoring (Levizzani and Cattani,
2019). Various versions of satellite-based precipitation products have been
developed and improved (e.g: Adler et al. 2003; Ashouri et al. 2015; Hong et al.
2004; Hsu et al. 1997; Hsu et al. 1999; Huffman, 2019; Huffman et al. 2018;
Huffman et al. 2010; Huffman et al. 2007). They provide globally consistent



measurements of precipitation in space and time with quasi-global coverage (Derin
and Yilmaz, 2014). Several researchers have compared satellite precipitation
products and found that multi-sensor ensemble products provide the highest quality
data (Beck et al., 2020; Derin and Yilmaz, 2014; Gehne et al., 2016; Sun et al.,
2014; Sun et al., 2018a; Zeng et al., 2018; Zhu et al., 2015). Precipitation patterns
are easier to understand in SPPs, showing various precipitation characteristics like
amount, probability, and type. Satellites provide very important data on
precipitation, particularly at high altitude areas (Derin and Yilmaz, 2014) where
access to gauges is very poor. Their coverage is high in space, but SPPs can
perform near real-time monitoring; often, they do not resolve correctly the intensity
of precipitation at the local scale (Mastrantonas et al., 2019; Zhou et al., 2022).
These are the uncertainties in sampling, indirect observation errors, difficulties in
estimating precipitation intensity, especially in regions of complex topography and
convective systems (Lo Conti et al.,, 2014; Zhou et al., 2022). Despite many
advantages offered by SPPs, the systematic mistakes are being made in the cases of
lack of ground-based measurements as references (Yang et al., 2016), making them
not sufficient to serve the general purposes of hydrology and water resources
(Yong et al., 2010; Zhou et al., 2022).

1.1.1.4  Bias Corrections of Satellite Precipitation Products

SPPs normally exhibit bias and errors over areas of complex topography and
diversified climates. This was pointed out by several studies such as: Chaudhary
and Dhanya (2019), Kidd and Huffman (2011), Prakash et al. (2015, 2016), Tang et
al. (2015), Tian et al. (2009), Xu et al. (2017). Such inaccuracies in precipitation
estimation can also lead to errors in the precise distribution of precipitation over
different areas (Mastrantonas et al., 2019; Zhou et al., 2022). Bias correction is
applied as part of the process of tuning the satellite data to better match the gauge
observations, thus improving the accuracy and reliability of the SPPs. Various bias
correction methods exist (Maraun, 2016) and have been practiced to improve the



quality of SPP data. The simple scaling method is one of the common approaches
(Boushaki et al., 2009; Lin and Wang, 2011; Tesfagiorgis et al., 2011; Vila et al.,
2009). This approach follows additive or multiplicative bias factors to reduce the
discrepancy between the satellite estimates and the reference data, hence enhancing
the quality of SPPs. (Yang et al., 2016). Bias correction is quite vital for any sort of
accurate climate prediction and reliable hydrological data (Yong et al., 2010; Zhou
et al., 2022, Chaudhary and Dhanya, 2019).

The combination of SPPs with ground gauge observations is fundamental to
complement each other (Rasmy et al.,, 2014; Zhou et al., 2022). Indirect
applications of satellite sensors can introduce errors. Direct measurements of
precipitation at a specific point can be used to detect and reduce these errors. In
many cases, the accuracy of SPPs increases significantly when combined with
gauged observations (Tapiador et al., 2020; Zhou et al., 2022). To illustrate, in one
study, calibration of IMERG products with assimilation of ground observations can
reduce errors by 47%-63% in the US (Tian and Peters-Lidard, 2010).
Improvements in precipitation accuracy are common (Akinyemi et al., 2020; Chen
et al., 2021; Jafarpour et al., 2022; Jiang et al., 2021; Yu et al., 2020; Zhang et al.,
2022). However, studies considering the effects of complex topography on
precipitation are much less (Amjad et al., 2020; Lei et al., 2021; Ward et al., 2011;
Yu L.et al., 2020).

Over these years, progress has been excellent in meteorological satellites and
satellite-based quantitative precipitation estimation (QPE) technologies (Tang et
al., 2015; Yang et al., 2018; Zheng et al., 2021). As a matter of fact, the integration
of SPPs into ground observations enhances their reliability and continuity in space.
This study combines ground observations with environmental data through a
machine learning approach to IMERG satellite data, focusing bias correction over
highly variable topography in Turkiye. This represents the first daily precipitation
study using ancillary environmental features in a bias correction framework

supported by an explainable artificial intelligence with SHAP.



1.2 Importance of Study

1.2.1 Goals and Motivation of the Study

SPPs, though presenting high spatial resolution, are not as widely applied in
hydrology and water resources due to their relatively lower accuracy in terms of
representing the spatial distribution of precipitation (Yong et al., 2010; Zhou et al.,
2022; Mastrantonas et al., 2019). In contrast, the well-documented good point-scale
accuracy of the gauge data (He et al., 2023; Zeng et al., 2018b) increases the spatial
reliability when integrated into the SPPs. Many previous types of studies have
estimated the output performance of model and satellite-based products only for
complex topography (e.g., Derin et al., 2016; Derin and Yilmaz, 2014; Gampe and
Ludwig, 2017; Hobouchian et al., 2017; Mei et al., 2014; Xu et al., 2017). Several
studies focused on complex and non-complex topographic features simultaneously
(e.g. Beck et al., 2019; El Kenawy et al., 2015; Mayor et al., 2017; Sharifi et al.,
2016). Some of the previously mentioned studies (e.g., Derin and Yilmaz, 2014;
Mei et al., 2014) were completed prior to the release of the promising precipitation
product called IMERG.

Traditional statistical methods tend to be less capable of dealing with the non-linear
conditions and high-dimensional variability of environmental variables (Donoho,
2000; J. Fan & Li, 2006; Johnstone & Titterington, 2009).The popularity of
machine learning promises huge improvements, thanks to big data, advanced
algorithms such as deep learning and ensemble methods, and increased
computational power (Li, 2022).Random Forest algorithm significantly enhances
satellite-based precipitation estimation (Li et al., 2021b; Lao et al., 2021; He et al.,
2016).Numerous studies have underlined that XGBoost proves its efficiency in
regression related tasks, showing outstanding performance even with complex and
high-dimensional data (e.g., Zhang et al. 2018; Zhong et al. 2018; Nguyen et al.
2019; Feng et al., 2021).This study focused on the bias correction of the IMERG

precipitation record by investigating how environmental features and their



interactions impact the performances of different models. SHAP is used to enable

model-agnostic interpretability, showing the importance of the features and their

contribution to the result (Li, 2022). The motivation of this study is to uncover

relationships between environmental factors and satellite precipitation data in order

to obtain robust local precipitation data. Within this motivation, the goals of this

study are;

Improving the accuracy of satellite precipitation products (SPPs) in

Turkiye.

Solving the spatial representation problem of IMERG by using ground

observation data

Training machine learning models using environmental features and apply

them to ungauged areas

Interpreting the control of complex environmental features, such as

topography, on precipitation patterns over Turkiye.

Utilizing the SHAP library to explain and interpret machine learning

models to understand model decision mechanisms

Producing robust and accurate precipitation products with using only one

satellite product with related environmental features






CHAPTER 2

STUDY AREA AND DATASETS

The goal of this chapter is to inform the reader about the study area and the
datasets. An examination of the dataset is given to evaluate the models and their
training steps. This chapter also provides information about preprocessing, which is
used to improve the quality and relevance of the data and thus optimize model

performance.

2.1  Study Area

In the Turkiye, topographical varieties from high mountains to arid plateaus to
coastal influences give a characteristic shape to different precipitation patterns and
climatic conditions (Amjad et al., 2020). Starting from the north to the south, these
parts contain major mountain ranges on the ridge orographic and a flat plateau in
the middle (Amjad et al., 2020). Topography is among the key factors affecting the
precipitation and precipitations pattern of Turkiye (Amjad et al., 2020). The
country has a diversified climatic condition, with its coastal areas usually mild and
interior Anatolian Plateau experiencing extremely hot summers with cold winters

and minor annual precipitation (Sensoy, 2004; Amjad et al., 2020).

Selection of the study area was performed to capture the unique peninsular shape
and diversified climate and complex topographical characteristics of Turkiye. The
meaning of "complex topography"” varies according to different literatures: To
illustrate, some refer to it in terms of high elevation (e.g., Dinku et al., 2002; Hirpa
et al.,, 2010; Milewski et al., 2015), while others describe it as the standard
deviation of elevation (e.g., Chiaravalloti et al., 2018). Among studies, a clear
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explanation for the complex topography is lacking. The reason in Turkiye is high
elevation, steep slopes, and the resulting impact on variable climatic conditions
(Amjad et al., 2020). Due to topography, the amount of precipitation is certainly
influenced by such factors because air, warmed through the influence of
topography while ascending, leads to condensation along slopes and results in
higher precipitation where the gradients are steep (Hughes et al., 2009). These
would be the topographic and climatic conditions that will seriously challenge the
accurate measurement of precipitation with the use of the Satellite Precipitation

Products.

In Turkiye, the long-term average annual precipitation was recorded as 573.4mm
(1991-2020 period), During 2023, the average annual precipitation was
approximately 12% higher than the long-term average reaching 641.5 mm (General
Directorate of Meteorology (GDM), 2023). The selection of the area depends on
the number of rain gauges. The gauges should be representative of the area. Figure
2.1 shows the distribution of quality controlled rain gauges in the area. 301 gauges
distributed around the study area represent different climatic and topographical
parts of Turkiye, of which 244 are green, linear gauges and the remaining 57 are
purple, triangular test gauges. Coastal and inland gauge total precipitation amounts
change because of mountain blockage (Amjad et al., 2020). There exist a number
of studies performed to characterize the accuracy of precipitation products over
Turkiye (e.g., Biyik et al., 2009, Demir et al., 2018, Derin and Yilmaz, 2014, Toros
etal., 2018, Yucel, 2015, Yucel et al., 2011, Yucel and Onen, 2014).

The study area defined and presented in Figure 2.1 introduces diversified
topographical and climatic features. The highest annual precipitation in Turkiye
occurs in the Black Sea region, due in part to the barrier effect from the
surrounding mountains (GDM 2023; Gottardi et al. 2012). The cross-section in
Figure 2.2 shows the relatively dry plateau and contrasting orographic features on
either side. The area selected for showing the complex topography conditions

influence in precipitation patterns of Turkiye.
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Figure 2.2. Cross Section of Study Area

2.1.1 Bias Correction of Satellite Precipitation Products, Importance and

Literature Review

2.2 Datasets

2.2.1 Ground Based Precipitation Data

Ground-based precipitation observations are essential for understanding
precipitation patterns. It is measured by an instrument called a gauge. Gauges
measure points of precipitation on the surface. They are located in different
environmental areas to collect information on the intensity of rainfall over time.
The ground-based gauge dataset for this study was provided by the General
Directorate of Meteorology (GDM). The most common instrument used to measure
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precipitation is the rain gauge. These instruments aggregate rainfall at a specific
point and measure the amount of precipitation. A total of 301 qualities controlled
and complete rain gauges were used in the study. Figure 2.1 shows a map of the
study area and the distribution of gauges. The data covers the period between
January 2015 and December 2022.

2.2.2 IMERG/Satellite-based Precipitation Product

Integrated Multi-Satellite Retrievals for GPM (IMERG) is an algorithm developed
by NASA that has been evaluated for estimating surface precipitation from satellite
retrievals with global coverage (Huffman, 2019; Huffman et al., 2018). NASA
applied the IMERG algorithm to both TRMM-era and GPM-era data, creating a
relatively long (more than 20 years), high spatial (0.1 degrees) and temporal (30
minutes) resolution satellite-based precipitation record with near global coverage.
The Global Precipitation Measurement (GPM) mission is an international satellite
mission launched by NASA and JAXA (on February 27, 2014) following the
success of the Tropical Rainfall Measuring Mission (1997-2015; Gebregiorgis et
al., 2018). The main component of the GPM mission is the "Core Observatory"
satellite, which carries an advanced radar/radiometer system to measure
precipitation from space and serves as a reference to unify precipitation
measurements from a constellation of satellites. IMERG products are available for
free download (https://gpm.nasa.gov/data/imerg). The IMERG algorithm consists
of three products. They are Early, Late, and Final. The Early and Late IMERG
products are satellite-only products with a lag of 3 hours and 12 hours,
respectively. They are near real-time products. IMERG Final Run, on the other
hand, uses MERRA2 for the vertically integrated vapor, GPCC monthly
monitoring analysis for the gauge, and revised precipitation retrievals that depend
on ERA-5 to further correct the satellite-based precipitation retrievals. The
integration of these additional data sets requires a latency of about 3.5 months for

the final run.
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These products used in the IMERG algorithm to update data from TRMM, which
outperforms the TRMM Multi-Satellite Precipitation Analysis (TMPA) algorithm
(Gebregiorgis et al., 2018). The GPM core satellite is a multi-channel, dual-
polarization passive microwave (PMW) sensor with an active scanning radar.
Compared to the previous system, the TRMM satellite, this system has several
improvements: the orbital inclination has been increased from 35° to 65° for better
coverage; the radar has been upgraded from single to dual frequency, while "high
frequency"” channels have been added to the PMW, allowing and enabling the
detection of light and solid precipitation, respectively. (Huffman et al., 2015; Hou
et al., 2014; Ramsauer et al., 2018). The IMERG algorithm collects data from
multiple satellites and merges them to obtain global precipitation.

The IMERG Late product is a near real-time, gridded, multi-satellite global
precipitation estimate with quasi-Lagrangian time interpolation provided every 30
minutes at 0.1° x 0.1° (Huffman., 2019; Huffman et al., 2018).

2.2.3 Digital Elevation Model (DEM)

This study used the Copernicus European Union Digital Elevation Model (EU-
DEM 1.1). This DEM is part of the European Union Earth Observation datasets
under the Copernicus program. The spatial resolution of the DEM is 25 m with
vertical accuracy: +/- 7 m RMSE (EU-DEM 1.1). The DEM data were used in this
study to illustrate the spatial distribution of precipitation as a function of
topography and elevation change. The effects of topography and related features
are considered to provide a more reliable and accurate representation of
precipitation. DEM data were also used to obtain Effective Terrain Height (ETH),
Distance to Coast, and Facet features to represent not only elevation but also other
related feature effects on precipitation. These topographic features were selected
considering the Precipitation-elevation Regressions on Independent Slopes Model
(PRISM; Daly et al. 2008; Daly, 2006; Daly et al. 2002).
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224 Climate Zones

Climate regions are important for developing effective strategies in meteorology,
hydrology, forestry, and agriculture. lyigin et al. (2013) used a hierarchical
clustering method called Ward's method to classify climate regions in Turkiye
according to temperature, precipitation and humidity data from meteorological
stations for the period 1970 to 2010 (lyigin et al., 2013). This study used 224
meteorological stations across Turkiye and identified 12 climate zones (lyigun et
al., 2013). Figure2.1 shows the climate classes with numbers. In the study area, 5
different climate classes influence our models. These climate classes are presented

and defined below:

The Dry-subhumid Mid-Western Anatolia Region is described as a transition
zone between the semi-humid Aegean and the humid Mediterranean to the dry
subhumid/semiarid continental central Anatolia region (Iyigiin et al., 2013). This
region is located in the western part of the study area. This climatic region is
symbolized as number 2 and is shown in figure 2.3.

The Dry Summer Subtropical Humid Coastal Mediterranean Region is coastal
desert in winter experiences a distinct season of mid-latitude cyclones and tropical
high pressure systems in summer. This climate class is seasonal in that there is
always high rainfall in the winter season and low rainfall in the summer. This
climate is also characterized by Mediterranean forests and scrub (Iyigiin et al.,

2013). These are symbolized by the number 3 and are shown in Figure 2.3.

Semihumid Eastern Marmara Transition Sub-region is specified as transition
climate region in between the Mediterranean, and the Black Sea climate regions.
The vegetation of this climate is mainly mixed or pure dry forests (both conifers
and broad-leaved deciduous and red pine and oaks) and maquis (Iyigin et al.,
2013). The northern part of the study area has this climate region and is shown in

figure 2.3 as number 4.
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Dry-subhumid/Semiarid Continental Central Anatolia Region is characterized
by a mesothermal and microthermal Continental Central Anatolia climate. The
indicated vegetation consists of dry forests and expansive steppe lands across its
huge plains, plateaus, and highlands (Iyigiin et al., 2013). This climate region is
presented in figure 2.3 as number 7. The central part of the Anatolian region and

the study area belong to this climate region.

Mid-latitude Humid Temperate Coastal Black Sea Region occurs in the mid-
latitude region of the Black Sea coastal belt. The Black Sea coast, with the
exception of the part in the Marmara region, is considered to be within the humid
temperate region of the mid-latitude Black Sea coast. This region is subject to
precipitation throughout the year. Due to the effects of mid-latitude cyclones and
the orographic uplift of polar air masses, the heaviest rainfall occurs in the autumn
season. The vegetation is characterized by humid boreal mixed forests It is shown

as number 8 in Figure 2.3.
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2.3  Pre-processing of Data

2.3.1 Pre-processing

SPP needs to be integrated with ground gauge observations (Rasmy et al., 2014;
Zhou et al., 2022). The bias in the satellite precipitation data is corrected using the
gauge data. The structure of precipitation is complex and therefore highly variable
in space and time (Marani, 2005). Satellites do not account for topography, and
this feature improves model performance (Senocak et al., 2023), so precipitation-

related environmental features were obtained to train the models.

Eliminating biased gauges improves the quality of the target variables. Following
the PRISM methodology of Daly et al. (2008), distance to shore facet and elevation
were selected to improve model accuracy. The IMERG data are pre-processed to a
daily value and synchronized with gauge data. The pre-processed input data were
converted to tabular form. Categorical variables converted to one-hot encoded
features to make them easier for machine learning models to understand. Table 2.1
shows an example of an input table used to train the model (F: Facet, CR: Climate

Region).
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Table 2.1. Input table

St_No Obs IMERG PLP

17015
17602
17652
17723
17744
17745
17823
17826
17882
17892
17906
18004
18037
18047
18062
18074

o o o o o

0.9
1.6

11
12.2
2.1
0

0.00
0.35
2.58
0.17
5.48
2.15
11.84
1.92
2.12
14.10
1.46
1.09
22.17
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0.26
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Elev Dist Coast

715.891 314.88
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2.3.1.1  Quality Control of Gauges

The quality of the target data is directly related to the quality and reliability of the
results. Calibration issues can affect the quality of rain gauge data (e.g., Robinson
and Rodda, 1969; Constantinescu et al., 2007; Sieck et al., 2007). Therefore, it is
critical to account for errors in gauge data that create the potential for poor
generalization of models. In this study, to ensure the quality of the target variable,
gauges with more than 10% missing (null) values were eliminated to reduce noise
in the data. Then, the cumulative precipitation of each station is compared with
nearby stations by considering topographic effects with double mass curves (DMC)
to understand the consistency and harmony of rain gauges. Anomalies are detected
and related hydrographs are also examined to eliminate gauges with bias. After
eliminating insufficient gauges, the sufficient number of gauges is 301 to represent
the spatio-temporal variability of precipitation within the study area.

The gauges with a high amount of missing data or data with bias introduce noise
into the models, which can distort the model outputs and reduce the reliability of
the models. In addition, using only gauges with rich and accurate records reduces
bias and improves the overall performance of the Random Forest and XGBoost
models. Figure 2.4 shows an example of the DMCs used in the study plots (a-
coherent, b-non-coherent rain gauge data). Each station was compared with its
neighbors to find errors in the record. Topographic factors were meticulously
considered. Plots of DMCs, along with hydrographs and vital statistics (R2, slope,
bias ratio, and number of missing data) were drawn to clearly assess station
performance. Incoherent plots have vertical or horizontal line structures.
Hydrographs are checked after observing these anomalies, then stations with

missing records were eliminated (Figure 2.4 plot b:x axis station was eliminated).
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Figure 2.4. Double Mass Curve Graphs to Compare Coherence Between Gauges






CHAPTER 3

METHODOLOGY

The purpose of this chapter is to inform the reader of the methodological processes.
Bias correction algorithms and their working principles are also covered to ensure
that the reader understands the whole process. In addition, this study uses advanced
bias correction algorithms and explainable artificial intelligence (XAI) techniques,

mainly from the SHAP library, to provide transparency in model decisions.

3.1 Features

Satellite precipitation estimates are derived from measurements of meteorological
quantities by highly specialized sensors on satellite platforms. However, this
approach often fails to adequately represent topographic effects on precipitation, as
factors such as slope and elevation changes have the potential to influence local
precipitation pattern characteristics. Higher slopes and elevations receive more
precipitation due to condensation or orographic lift (Hughes et al., 2009). There are
numerous studies showing that SPPs contain significant uncertainties over complex
topography because they are unable to represent the effect of topography on
precipitation when the influence of topography is high (e.g., Derin et al. 2016,
Hirpa et al., 2010; Krakauer et al., 2013; Mantas et al. 2015; Thouret et al. 2013)).
Some studies show that SPPs contain large errors when orographic precipitation is
highly effective over the area (Derin et al., 2016; Derin and Yilmaz, 2014; Dinku et
al., 2007; El Kenawy et al., 2015). These studies were considered in the feature

selection.
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Proper feature selection is key to quality bias correction and model development. A
feature should represent a region with due clarity and relevance to the task. Table
3.1 shows the selected features. There are two groups of features in this study:
static and dynamic. Static features are lyigiin Climate Regions, Facet, Elevation,
Distance to Coast, Effective Terrain Height (ETH), Longitude, and Latitude. The
IMERG products represent dynamic features such as daily precipitation and

probability of liquid precipitation.

Table 3.1. Machine Learning Algorithm Feature Classification

Features
Static Dynamic
lyigiin Climate Classes (lyigun) IMERG
Facet Probability of Liquid Precipitation (PLP)

Elevation (Elev)

Distance to Coast (Dist_Coast)

Effective Terrain Height (ETH)

Longitude (Long)

Latitude (Lat)

In this study, Facet, Effective Terrain Height, and Distance to Coast features were
created based on the Precipitation-elevation Regressions on Independent Slopes
Model (PRISM; Daly et al. 2008; Daly, 2006; Daly et al. 2002) in order to gain a
deeper understanding of the effect of complex topography on the precipitation

distribution in Turkiye.

3.1.1.1 Facet

Facet is the relationship between the slope of the terrain and its frequent

orientation. Facets group different landforms, ranging in size from gigantic
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mountains to gentle slopes. (Daly et al. 2008). A Gaussian filter was applied in the
Matlab environment to generate facet data from the DEM. Wavelengths with
different values are applied to the original DEM data for smoothing. The filter
wavelengths applied to the DEM data have 3 values (A= 5, 10, 12.5 km). The
original DEM resolution is 25 m. Based on the DEM resolution, the filter
wavelengths are determined by value differences to obtain better results. The
specific orientation of a cell is determined by the orientations of neighboring cells
within a radius equal to the wavelength. This approach ensures that the applied
filter does not calculate orientation based only on the applied cell and its neighbors.
It is determined by elevation variations over a larger surrounding area. The
orientation value of each cell in the DEM data was then determined by comparing
its elevation to its 8 neighboring cells, with 4 neighboring cells given double
weight. Differences between cell values were taken into account to assign numbers
between 1 and 8, corresponding to N, NE, E, SE, S, SW, W, and NW compass
orientations, respectively (Daly et al. 2008).

3.1.1.2 Distance to Coast

The Distance to Coast feature is generated from the coastline and DEM data in
ArcGIS using the Euclidean Distance tool. The generalized coastline was used
because bays and inlets were not considered to be important sources of moisture for
precipitation compared to the open sea. The purpose of calculating the distance to
the coastline feature is to examine precipitation occurrence in relation to proximity
to large bodies of water (Daly et al. 2008). Coastal areas may have different
precipitation patterns due to interactions between sea and land. Turkiye has some
sea affecting precipitation such as the Mediterranean Sea, and the Black Sea.
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3.1.1.3  Effective Terrain Height

Using the Copernicus DEM data, the Effective Terrain Height (ETH) feature was
obtained in the ArcGIS environment. Firstly, the minimum elevation within the
40km radius is determined for each cell. The spatial average of the minimum
values of each cell is calculated to smooth the DEM data. This smoothed elevation
data was then extracted from the original DEM data to obtain the ETH value.
Finally, this value is smoothed by averaging within a 20 km radius (Daly et al.
2008).

3.1.1.4  Probability of Liquid Precipitation (PLP)

Satellite precipitation products tend to contain more errors when estimating
precipitation, including snowfall, and the performance of the products decreases
(Derin and Yilmaz, 2014). The active radar on board the GPM mission allows the
identification of the phase of precipitation by focusing on different wavelengths. In
this study, the probability of liquid precipitation (PLP) of the IMERG product is
also used to understand the effect of the precipitation phase on the satellite products
and to correct the bias accordingly. This feature takes values between 0 and 1.
Higher PLP values indicate rain. A value of 0.5 represents a mixture of rain and
snow. Snow and snow pellets are represented as equal to or less than 0.5. A value
of O represents ice. Dew and frost are not events directly related to precipitation, so
the IMERG PLP data do not include information on them (Huffman., 2019).

3.1.15 Correlation of Features

Features of any machine learning model can contain similarities (Nohara et al.,
2022), which in turn can reduce the effectiveness of machine learning models.
Maximum relevance and minimum redundancy are desired to make machine

learning model results more accurate and robust (Zhao et al., 2019). The correlation
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matrix of features is constructed to determine pairs of related features. Related
features provide the same information to machine learning models called as feature
redundancy and negatively affect the performance of the model because models
may not learn related information from other features (Zhao et al., 2019).
Correlations of features can prevent interpretation. Therefore, correlated features
are usually removed before training the models (Nohara et al., 2022). Thus, feature
correlations are examined before model training to increase efficiency, and these
correlations between static features are shown in Figure 3.1. Only time-
independent feature correlations are considered to provide an overall view of the
features. The feature correlations are not high. Therefore, these features are suitable
for machine learning algorithms. Positive correlations show tendency of features to
increase together while negative value of correlations indicates that increase in one
feature resulted as decrease for other one (Nicodemus & Malley, 2009). Correlation
value of 0 indicates that there is no correlation between features (Nicodemus &
Malley, 2009).

Highly correlated features provide redundant information to the model in the
training step (Zhao et al., 2019). With feature redundancy, models become
overconfident and produce results without considering other features, which
reduces the generalization ability of models (Zhao et al., 2019). To avoid
redundancy of features, this study only considers IMERG, a merged satellite
precipitation product, in the training process. Using other satellite precipitation
products along with IMERG creates redundancy and lessens the effectiveness of
the model. It further removes the effects of environmental features that the satellite

precipitation products cannot represent.

Shapley values also produce unrealistic results when features are correlated (Salih
et al.,, 2024). High correlations require feature engineering to construct new
features Feature engineering categorizes and converts existing data or provides new
information (Chollet, 2017; Senocak et al., 2023).
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Figure 3.1. Feature Correlation Matrix of Static Feature

3.2  Bias Correction Algorithms and Explainable Artificial Intelligence
(XAI)

Satellite precipitation products have inherent errors, but correcting their bias leads
to significant improvements, increasing their value in hydrological modelling
studies (Derin & Yilmaz, 2014; Yilmaz et al., 2005; Su et al., 2008; Thiemig et al.,
2013). Tree-based Al models such as random forest and XGBoost provide more
interpretable with higher prediction accuracy in precipitation than traditional
statistical models (Basagoglu et al., 2022; Chakraborty et al., 2021a; Chang et al.,
2016; Dumitrescu et al., 2021). On tabular data containing independent and
meaningful features, tree-based machine learning models outperform neural

network-based deep learning models (Lundberg et al., 2020; Feng et al., 2021). The
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advantages of tree-based algorithms lie in their capability of understand intricate

patterns between parameters resulting in robust output data.

The inclusion of environmental parameters increases the accuracy and quality of
the corrected data. In areas where environmental features are especially effective
drivers of precipitation (such as topographic complexity). Multiple features related

these drivers improve performance of models.

3.21 Model Selection

The model selection process is a critical part of the bias correction of IMERG
precipitation products. Several factors come into play when selecting a model,
including data characteristics (type, volume, linearity), accuracy, interpretability,
and effectiveness of the model for the specific subject. Each model has advantages
and disadvantages. To illustrate, high-dimensional nonlinear data may not be
handled by simple models. Simple models often fail to learn the complex internal
patterns of the given data in a meaningful manner. Therefore, they memorize the
data, a phenomenon called overfitting. More complex models may struggle with

interpretability and transparency (Lin et al., 2023).

The machine learning models evaluated in this study are random forest (RF)
(Breiman, 2001) and extreme gradient boosting (XGBoost) (Chen and Guestrin,
2016) for satellite-based precipitation estimates. Models are selected based on high
prediction accuracy in multivariate nonlinear problems in different domains (e.g.,
Chakraborty et al., 2021b; Ben Jabeur et al., 2021; Qiu et al., 2020; Geurts and
Louppe, 2011; Acosta et al., 2020; Jabeur et al., 2022). The effectiveness of
machine learning has been widely demonstrated under conditions of complicated
problems with non-linear datasets. These conditions make it difficult to build
physical models using conventional mathematical and statistical analyses (EI-Alfy
and Mohammed, 2020).
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3.2.2 Evaluation of Model Training Process

The selected gauge target variable and environmental features have been carefully
prepared in daily tabular form as input to the machine learning models (Random
Forest and XGBoost) to correct for the IMERG precipitation bias in Turkiye

To achieve robust precipitation data in Turkiye, XGBoost and Random Forest
models were trained separately for each day. Random Forest model was
implemented from Python scikit learn random forest regressor models (Pedregosa
et al., 2011), XGBoost python package was used to fit XGBoost models (developed
by Chen & Guestrin, 2016).

Several metric scores calculated to understand and evaluate the model
performance, detailed information given in Metric used for model evaluation part
and metric results and evaluations are provided in the Results chapter. Models run
on a daily basis, so their performance varies. Models with the highest scores are

generally found on days when more gauges’ report precipitation (higher coverage).

3.2.3 Transparency of Machine Learning Models

3.23.1 Difference between Interpretable Machine Learning (IML) and
Explainable Artificial Intelligence (XAl)

Interpretable Machine Learning (IML) and Explainable Artificial Intelligence
(XAl) are concepts about the human understandability of machine learning models.
However, these concepts differ from each other. IML includes models with
transparent decision mechanism and understandable by humans without
considering other explainers, therefore called as white box (Ersoz et al., 2022).
Examples of IML models are linear regression and decision trees. On the other
hand, Explainable Al focuses on explaining the results of more complexes, often

"black box" models by using explainers to make their decision mechanisms
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transparent by showing process of decision (Ridley, 2022; Senocak et al., 2023).
Examples of models that require XAl are deep neural networks or ensemble

methods such as random forest and XGbhoost.

3.2.3.2  Concept of XAl

The concept of Explainable Al aims to shed light on the inner workings of machine
learning models, which are often seen as impenetrable black boxes. This black-box
nature can lead to unexpected performance and also makes human inspection of
such models impossible. (Castelvecchi, 2016; Senocak et al., 2023). As artificial
intelligence touches more and more areas of our lives, the importance of

Explainable Al is growing.

The Random Forest and XGBoost algorithms are ensemble methods that build
numerous decision trees, creating complex structures that reduce the
understandability and trustworthiness of the models. Fortunately, they can be
interpreted globally or locally using XAl techniques. Global explainers provide
insight into the overall behavior of a model, helping to understand how it makes
decisions across the dataset through general patterns and feature importance.
Examples of global explainers include permutation feature importance (PFI,;
Breiman, 2001), accumulated local effects (ALEs; Apley & Zhu., 2020), and
SHapley additive explanations (SHAP; Lundberg and Lee, 2017; Lundberg et al.,
2020). On the other hand, local explainers focus on detailed explanations of
individual predictions. Examples of local explainers are local interpretable model-
agnostic explanations (LIME; Ribeiro et al.,, 2016) and SHapley additive
explanations (SHAP; Lundberg and Lee, 2017; Lundberg et al., 2020).

One of the XAl techniques used in this study is SHAP (Shapley Additive
explanations) (Lundberg and Lee, 2017; Lundberg et al., 2020). SHAP is a local
and global explainer that finds the exact contribution of traits by considering all

possibilities (Lundberg and Lee, 2017), whereas other local explainers such as
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LIME are not exact values. Therefore, merging SHAP values of different

predictions is possible while other local explainers introduce bias in the results.

In this study, Tree explainer (Lundberg et al., 2020), which is suitable for tree-

based algorithms such as random forest and XGBoost, is utilized.

3.24 Random Forest

Random forest is a supervised machine learning algorithm (Breiman, 2001) that
efficiently solves both regression and classification problems. During the training
process, this algorithm creates an ensemble of decision trees (Gong et al., 2020), a
resembling technique called bootstrapping generates random subsets from the
original data (Efron 2000; Sushanth et al., 2023; Stef et al., 2023) to build each
tree. Each subset is randomly drawn and may have duplicate rows to build different
decision trees. This allows the model to better handle complex relationships, avoid

overfitting, and improve generalization.

While performing classification, it aggregates the majority votes from trees (Mod),
regression models calculate the average of each tree (Sushanth et al., 2023). The
performance and functions of the models are determined by hyperparameters
(Rong et al., 2020; Sam et al., 2020; Wang et al., 2021). The random forest
algorithm is advantageous for satellite-based precipitation estimation (Li et al.,
2021b; Lao et al., 2021). Random forest models from the ScikitLearn library are
used in this study (Pedregosa et al., 2011).

Machine learning algorithms have become increasingly popular for bias correction
(Zeng et al., 2021; Wang et al., 2020). To illustrate, He et al. (2016) developed a
random forest method to improve precipitation in the United States. They used
numerous spatial resolutions for downscaling and tested the performance of the
product. They concluded that the spatial distribution is the main problem of SPPs,

and this problem can be reduced by a random forest algorithm.
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3.25 XGBoost

XGBoost is designed to extend the machine learning algorithm of the gradient
boosting framework by using an ensemble learning method (Chen & Guestrin,
2016). Ensemble means building more than one base model to compute results. It
constructs predictive decision tree models as weak learners by iteratively correcting
the errors of previous models using a method called gradient descent to minimize a
given hyper function (Chen & Guestrin, 2016; Chollet, 2017; Li et al., 2023; Stef et
al., 2023; Senocak et al., 2023). As an improvement of the gradient-boost decision
tree algorithm (GBDT) (Han et al., 2024; Hancock & Khoshgoftaar, 2020;
Friedman, 2001), XGBoost is known for its high accuracy, speed in processing
time, capture of complex nonlinear relationships, and computational efficiency (Ali
et al., 2023; Zhu et al., 2023). XGBoost is well suited for bias correction of satellite
precipitation products because the technique can effectively model the complex
nonlinear relationships and thus correct systematic bias to improve the accuracy

and reliability of satellite precipitation estimates (Ali et al., 2023; Zhu et al., 2023).

XGBoost provides efficient tree pruning, regularization to reduce the complexity of
decision trees to improve performance and versatility. XGBoost is also a highly
compatible model with SHAP and tree explainer can efficiently provide SHAP
values (Lundberg et al., 2018). In a study comparing four ML-based algorithms and
three interpolation methods, XGBoost was selected as the best performer in
evaluating the downscaling of precipitation data via other parameters (Zhu et al.,
2023). Other regression-related studies have also utilized XGBoost and recorded its
success (e.g., Zhang et al., 2018; Zhong et al., 2018; Nguyen et al., 2019; Feng et
al., 2021).

3.2.6 Hyperparameter Tuning

Model performance and accuracy depend on hyperparameters that define how the
model operates to optimize accuracy (Chollet, 2017; Rong et al., 2020; Sam et al.,
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2020; Wang et al., 2021; Verma et al., 2022; Senocak et al., 2023). Proper tuning
ensures that the model captures the most important patterns in the data without
being overly complex or biased. Effective hyperparameters tuning improves the
model's ability to generalize to unseen data, resulting in better performance metrics
and more reliable predictions by selecting optimal hyperparameters that maximize
model performance and accuracy. This requires adjusting parameters such as
number of trees and tree depth to prevent overfitting and improve model

robustness.

Bayesian optimization improves performance and efficiency by quickly finding the
optimal hyperparameters space (Klein et al., 2016; Stuke et al., 2020; Wang et al.,
2021). Bayesian optimization emerges as a probabilistic model-based approach to
effectively navigate the hyperparameters space through iterative processes. Using
the Bayesian algorithm to optimize hyperparameters in random forest and extreme
gradient boosting decision tree models has been shown to be highly effective (e.g.,
Wang et al., 2021). Different combinations of hyperparameters are explored by
Bayesian search to find the combination with minimum bias and maximum
efficiency and accuracy. The BayesianSearchCV function in sci-kit-learn
(Pedregosa et al., 2011) is used to tune the hyperparameters. By systematically
exploring different combinations of hyperparameters, Bayesian search selects the
set of parameters that minimizes bias and maximizes the performance efficiency

and accuracy of the models.

In the region with complex topography, the tuning of hyperparameters becomes
particularly important due to the complicated relationships between parameters and
precipitation caused by the complex topography and associated climate changes. It
selects the most appropriate parameters by finding the minimum of objective
functions in large problem spaces (Peter, 2018) so that environmental descriptors
benefit with the highest efficiency. Understanding feature changes and topographic

influences to improve the accuracy of satellite-based precipitation data.
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3.3 Metrics Used for Model Evaluation

Metrics used for model evaluation and comparisons are Coefficient of
Determination (R?), Kling-Gupta efficiency (KGE), Alpha, Beta, r, Root Mean
Square Error (RMSE), Probability of detection (POD), False Alarm Ration (FAR),
Critical Score Index (CSI), Bias Error and Mean Bias Error (MBE).

Firstly, the accuracy of the model was analyzed using the Root Mean Square Error
(RMSE), KGE and its components which are commonly employed in the literature
(e.g. Zhu et al., 2023). All metrics reported in this study were strictly derived
from the test data. Original filtered IMERG vs. ground gauge data statistics were
also calculated to represent the harmony between satellite precipitation products
and ground observations. The study aims to improve the simulation of precipitation
data by exploiting the superior capabilities of advanced Random Forest and
XGBoost algorithms for better fits to ground observations.

331 Filter Usage and Its Importance

In this study, the models were trained daily for each day, but since the model
predictions for days with no precipitation are meaningless and distort the global
feature importance scores, the models were selected by filtering all metric and
SHAP plots. The models are filtered by the number of stations in the train data with
2 mm/day or more precipitation greater than or equal to 25 and the corresponding
daily SHAP values of the test data in order to understand and represent the feature
contributions in a meaningful way. The choice of this filter was based on the need
to understand not only the days with high precipitation, but also the spatial
distribution of the precipitation and how the models perceive this distribution. For
example, since it is quite possible to observe precipitation in only one area in
Turkiye, summer precipitation is only dominant in the Black Sea region of the
study area (Sensoy et al., 2008). In order to keep the variability of the data above a

certain level, 2 mm/day of precipitation was considered appropriate.
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3.3.2 Coefficient of Determination (R?)

The scikit-learn metric library includes numerous model selection and evaluation
tools according to model types such as classification, regression, and clustering
(Pedregosa et al., 2011). In this study, R2 (coefficient of determination) in scikit-
learn is used to evaluate the performance of models and original filtered IMERG

data from ground observations.

A value of 1 represents perfect representation. Negative values (-Inf is the
minimum) are also possible for models that are worse than a base model. The
output of a base model is always the average of the target variable (ground
observation), ignoring the inputs. A model that always predicts the average target
variable receives an R2 value of 0.0 (Pedregosa et al., 2011). In this study, days
without rain or low precipitation are predicted by the models as 0 mm/days or close
to 0 mm/days, and the average of the model predictions is almost the same as the
average of the observations, so the R2 score is calculated as O close to 0. In this
situation, there is no feature that affects the target variable, so it is pointless to use

different features.

The mathematical representation of R? is given as:

n A 2
z, Wi-yi)
1=1

R2(y,y) = 1 — Sz~
(y y) Zizl(Yi_Y)z

@)

y; is the predicted value of the i-th sample
y; is the corresponding true value for total n samples
y is the mean of all true values (Pedregosa et al., 2011).

The coefficient of determination is a very useful but limited metric, especially for
complex real-world applications. Other topic-related evaluations must also be

considered to define the overall performance of machine learning models.
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3.3.3 KGE and KGE Components

Kling-Gupta Efficiency (KGE) is an important unitless metric in hydrological
modeling recognizing that calibration of hydrological models is a multi-objective
task (Gupta et al., 1998). KGE decomposes and obtains different components
(correlation, bias and variability) from the Nash-Sutcliffe Efficiency (NSE) in the
concept of hydrology (Gupta et al., 2009). In addition, each component of the KGE
provides unique insights into the objective performance of models, highlighting
their strengths and weaknesses:

KGE=1—(— 1%+ (a—1)2+ (B — 1)2 @)
Where:
r: correlation coefficient.
a: Variability ratio (standard deviation ratio of simulated vs observed).
p: Bias ratio (mean ratio of simulated vs observed).

Understanding the KGE and its components of correlation coefficient (r), bias ratio
(beta), and variability ratio (alpha) is critical for effective water resource
management. The correlation coefficient (r) shows how well the model output
matches the observations over time. The bias ratio (beta) shows how the model
overestimates or underestimates the overall magnitude of the observations, and the
variability ratio (alpha) shows how the model overestimates or underestimates

variability. The ideal value of each component - r, a, 3 - is 1.

3.34 Root Mean Squared Error

Root Mean Squared Error (RMSE) is a common metric used to evaluate model
performance to show how well the model is working. RMSE is derived from the
root mean square error. In this study, RMSE is calculated from Scikit-learn metrics
(Pedregosa et al., 2011). The better the prediction of the model, the lower the
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RMSE. The higher the value, the larger the error margin. The unit of the RMSE is

the same as the unit of the dependent variable y (mm/day).

Nsamples ~1 A
Zi_o iy
= 3)

Nsamples

RMSE(y, y) =

In equation 3;

3A/l- iIs the predicted value of the i-th sample

;1S the corresponding true value (Pedregosa et al., 2011).
3.35 Metrics for Precipitation Events and Extreme Precipitation Events

Traditional metrics such as KIling-Gupta efficiency or other conventional
performance metrics tend to be inadequate to adequately capture model
performance with respect to extreme precipitation events. Therefore, in this study,
precipitation events were grouped according to precipitation event thresholds that
provide an accurate representation of model event performance. The general
precipitation event thresholds are 1 mm/day, 2 mm/day, and 5 mm/day, and the
extreme precipitation event thresholds are 10 mm/day, 20 mm/day, and 50
mm/day. The purpose of the threshold is to provide an accurate representation of
model performance and to define true positive (TP), true negative (TN), false

negative (FN) and false positive (FP) values.

3.3.5.1  Probability of Detection (POD)

Probability of Detection (POD) (unitless) is the first measure of model performance
for precipitation and extreme events with event thresholds. The POD score
represents the ability of the model to capture real events as they occur (Sharifi et
al., 2016). POD is the proportion of correctly identified events out of all observed

events:
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TP

POD =
TP+FN

(4)

TP: True Positive: Events that correctly predicted
FN: False Negative: Events that actually occurred but models missed

The best POD score is 1, indicating that all events are predicted.

3.35.2  False Alarm Ratio (FAR)

False alarm ratio (FAR) (unitless) is the proportion of reported but not observed

events over all reported events:

FAR = —2% ©)
TP+FP

FP: False Positive: Event actually not occurred but models predicted
TP: True Positive: Events that correctly predicted

The perfect score for FAR is 0 indicating that all predictions are true (Sharifi et al.,
2016).

3.3.5.3  Critical Score Index (CSI)

The Critical Score Index (CSI) or Threat Score (TS) (unitless) represents the ability
of the model to correctly identify events of interest, taking into account false
alarms and missed events. In other words, the proportion of correct model
predictions out of all observed and simulated events.

TP

CS] = —————
TP+FP+FN

(6)
TP: True Positive: Events that correctly predicted

FP: False Positive: Event actually not occurred but models predicted
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FN: False Negative: Events that actually occurred but models missed

A perfect score of CSl is 1, indicating that all predictions are actual events (Sharifi
etal., 2016).

3.354 Bias Score

The bias score (unitless) is the ratio of model predicted events to observed events,
representing the tendency of the model to over- or underestimate the occurrence of
events:

__ TP+FP
" TP+FN

Bias (M

TP: True Positive: Events that correctly predicted
FP: False Positive: Event actually not occurred but models predicted
FN: False Negative: Events that actually occurred but models missed

The perfect value of the bias score is 1, which represents all predicted events
occurring. Bias scores greater than 1 indicate overestimation, with models
predicting more events than actually occur. Similarly, a bias score less than 1 is an

underestimate, with models predicting fewer events than actually occur.

3.3.5.5 Mean Bias Error (MBE)

After analyzing the machine learning models performance according to
precipitation thresholds. IMERG and the overall model behavior in terms of

overestimation or underestimation is analyzed by Mean Bias Error (MBE).
13vN

Ps,iis simulated precipitation data

Po,i is observed precipitation data.
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A positive MBE indicates overestimation and a negative MBE indicates
underestimation. The unit of the MBE is the same as the unit of the dependent

variable y (mm/day).

3.4  Explainable Al and SHAP

Explainable Al (XAl) is used to find out the decision mechanisms of models by
showing the relationships between input and output values and which features are
most used by the model in the prediction step (Li, 2022). Machine learning models
are generally considered to be black boxes (Li, 2022). XAl algorithms also remove

this black box consideration. The main reasons for the importance of XAl are:

e Figuring out the reasoning behind output decisions,

Contribution of each feature to the result,

e Checking bias and errors in models,

e Making decision steps clear and transparent,

e Enhancing trust in machine learning models by making them user-friendly
and easy to explain,

There is no standard definition in the literature for the concept of "explainability"
in Al models (Adadi and Berrada, 2018; Linardatos et al., 2020; Stef et al., 2023).
However, if the output of the model can be clearly explained and the logic behind
the decisions can be understood by humans, then the model is considered
explainable (Miller, 2019; Stef et al., 2023).

Shapley scores are derived from game theory concepts to quantify and explain the
contribution of each feature to the output result (Shapley, 1953; He et al., 2023).
SHAP is one of the additive feature attribution methods (Lundberg and Lee, 2017).
SHAP values are effective in elucidating the contribution of each feature to the
model output and understanding the model behavior (Sushanth et al., 2023; Wang
et al., 2023). The most common SHAP explicators are kernel SHAP (Lundberg and
Lee, 2017) and tree SHAP (Lundberg et al., 2020). Tree SHAP, an interpretable

41



method for tree-based algorithms (Feng et al., 2021), improves Kernel SHAP by
ignoring feature dependencies (Mi et al., 2020) and focusing on individual feature
contributions. Tree SHAP does not evaluate every possible combination of
features. Instead, it focuses on a set of computations specific to each leaf in the tree
(Lundberg et al., 2020; Feng et al., 2021), and this approach makes the

computational step faster and even more accurate.

In this study, Tree SHAP was used as an XAl to improve the interpretability and
reliability of model results. The SHAP (Shapley Additive exPlanations) Python
package helps to understand the impact of each feature on model predictions by
calculating SHAP values (Strumbelj and Kononenko, 2014; Li, 2022) and
providing visualizations through various graphs, such as summary plots and

individual feature importance (‘force’) plots (Wang et al., 2023).

34.1 Model Agnostic and Model Specific Interpretations

There are two different approaches to interpretability, model-specific and model-
agnostic (Molnar, 2020). Model-specific interpretations are designed specifically
for models and only for that type of model, with the goal of representing the
internal structure. Some basic illustrations are; linear regression coefficients and
smooth operating principles in a generalized additive model (Li, 2022). More
complex models also take advantage of model agnostic interpretation, such as
examining the activation of neurons and layers to see which parts of the image
contribute to the final classification (e.g., Shrikumar, Greenside, & Kundaje, 2017;
Simonyan, Vedaldi, & Zisserman, 2013; Yosinski, Clune, Nguyen, Fuchs, &
Lipson, 2015). Model agnostic interpretation means that this methodology can be
applied to any machine learning model, and generally does not represent the
internal structure of the model. A deep understanding of the internal structure of
the model is not required to understand the results of the model agnostic approach
(Li, 2022).
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SHAP's model-agnostic behavior allows it to be applied to any machine learning
model, making it a valuable tool for increasing model transparency and
understanding feature contributions. SHAP represents the direct influence of
features on the prediction with the same unit as the output. Several studies have
started to take advantage of SHAP (Ribeiro et al., 2016; Strumbelj and Kononenko,
2014; Parsa et al., 2020). SHAP also has great potential for machine learning
model discovery, especially for spatial data. Each observation in the training and
test datasets has a unique geographic location (Li, 2022).

3.4.2 Understanding the Meaning of SHAP Features Importance

SHAP importance is quantified at the row level and reflects the contribution of a
feature in making a particular prediction, considering other given features for that
prediction, relative to the average prediction. This measure includes both the
direction and the magnitude of the influence of the feature. In practice, SHAP
importance is often presented in absolute terms for interpretation and comparison
during model training (Molnar, 2020). SHAP scores highly effected by variation of
given feature therefore reducing variation will reduce the effects of given feature.

343 Feature Importance Heatmap

The method of assessing the essential features in a machine learning model output
is called Feature Importance (Musolf et al., 2022; Khan et al., 2020). Visual
representations of the filtered SHAP Feature Importance (FI) scores for each daily
model are provided as heatmaps for each year, showing similar patterns. XGBoost
assigns zero importance to irrelevant features, so XGBoost's heatmaps contain a
large amount of dark blue color (Appendix A SHAP Feature Importance scores as
heatmap).

43



3.4.4 Merging SHAP Absolute Mean Plots

In this study, the RF and XGBoost models are trained on a daily basis. Absolute
mean SHAP values are calculated to obtain an overall importance of each feature
over the entire study period, i.e., 2015-2022, to provide a complete overview of the
collective impact of the features in the RF and XGBoost models. The average
importance of the filtered daily SHAP values is calculated to represent the

importance of the features.

345 Variation of Descriptor Importance in Space

Filter used to pre-select the data prior to generating the descriptor importance
variation plots. The following key static features were selected to examine their
spatial variation in descriptor importance: Elevation, Distance to Coast, Latitude,
and Longitude. Then, for all models from 2015 to 2022, the feature values and their
corresponding SHAP values were sorted and plotted with respect to the magnitude

of the feature value and the associated season.

SHAP values are used to explain the positive and negative contributions of each
feature. A SHAP value of 0 indicates no effect and is highlighted in red along the
y-axis. The median SHAP value is shown as a line extending from the 25th to the
75th percentile SHAP value. It describes the central tendency and variability of

feature importance.

In order to investigate the seasonal dynamics in more detail, the present analysis
focused on the two most important seasons: summer and winter. For this reason,
the importance of selected static features was evaluated in terms of seasonal
representativeness. This can be used as a basis for a fine-grained interpretation of
how static features contribute to model performance in different seasonal contexts.
This approach allows for a more detailed interpretation of the spatial and temporal
dynamics of feature contribution to model prediction.
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3.5  Summary of the Methodology Utilized in This Study

Satellite Precipitation Products (SPPs) have exhibited bias that have seriously
limited their ability to reflect the true patterns and spatial distribution of
precipitation. On the other hand, ground observations are very precise data at a
specific location. This study aims to correct the bias in IMERG late precipitation
data over Turkiye using environmental data and ground observations with machine

learning algorithms.

The supervised machine learning algorithms Random Forest and XGBoost, known
for their success in bias correction, are used to capture the complex relationships
between precipitation and various other environmental parameters. The selected
features included in the models are: climate class of a given location, facet,
elevation, distance from the coast, effective terrain height, IMERG data, liquid
precipitation probability, and geographic coordinates (longitude and latitude). In
this study, 5-fold cross-validation with Bayesian optimization was used to fine-tune
the models, improve model generalization, and more reliably capture complex

relationships in the input data.

Evaluations and comparisons are then made based on metrics such as KGE, R2,
CSI, POD, FAR, and SHAP values. SHAP explainers are used to improve model
reliability by providing a better understanding of the contribution of features and
behaviors in the model. By combining the SHAP values of the daily models, the
overall effects and the effects of spatial and temporal features are also analyzed
through different types of plots.
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CHAPTER 4

RESULTS AND DISCUSSION

This chapter evaluates the performance of machine learning algorithms in bias
correction of the IMERG precipitation product. The contributions of each feature

were analyzed with different SHAP graphs.

4.1  Evaluation of Bias Correction Algorithms

Different metrics are calculated for each model, then their mean, median and
standard deviation (Std) values between 2015 - 2022 are listed in Table 4.1. All

metrics are filtered and calculated from test data.

Table 4.1. Effectiveness Metrics Evaluation between 2015-2022
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41.1 Coefficient of Determination

Table 4.1 shows the coefficient of determination values of the filtered IMERG and
the machine learning models. The average R? for IMERG data from 2015 to 2022
was -2.09, which shows a very high inconsistency between IMERG estimates and
ground observations, suggesting that filtered IMERG is underperforming in terms
of using the mean of observed precipitation. This also reflects the inability of
IMERG to accurately capture the spatial distribution of precipitation. The standard
deviation of 8.69 explains that there is a high inconsistency and variability in the
predictions given by IMERG. In contrast, the mean R values for Random Forest
and XGBoost are 0.47 and 0.33, respectively, indicating that, on average, the
inclusion of environmental features and the use of machine learning models
significantly improve the accuracy of satellite-based precipitation estimates over
the stand-alone IMERG estimate.

4.1.2 KGE and Its Components

Table 4.1 shows the KGE and its components with the mean, median, and standard
deviation of each daily model and the corresponding filtered IMERG using test
data between 2015 and 2022.

The overall mean (median) KGE of IMERG, Random Forest, and XGBoost are -
0.28(0.07), 0.46(0.48), and 0.47(0.51), respectively. This indicates that the machine
learning algorithms significantly improve the precipitation estimates over the
original IMERG product. The positive KGE scores of the machine learning models
indicate that these models are better at capturing precipitation variability while
being able to improve forecast accuracy. Similarly, the higher median KGE of
XGBoost indicates that it generally outperforms Random Forest, although the mean
score is slightly lower due to some outliers. It should be noted that the complex

structure of precipitation and the lower amount of precipitation on some days
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lowers the score. The models are found to be very efficient on rainy days,

achieving KGE values of around 0.7 - 0.9.

Table 4.2 shows R2 and KGE values of some daily models with corresponding
precipitation amounts to further investigate the sensitivity of the model results. Day
column of the table shows year and day number of that year starting from 0 (0
corresponds to January 1). Train column shows the number of stations with 2
mm/day or more precipitation on that day. The Obs column shows the total amount
of precipitation in mm/day for that day. Other columns show scores for IMERG,
Random Forest, and XGBoost, respectively. The KGE scores also show that the

models perform better for high amounts of stations with 2mm/day or more.
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The KGE scores of the models were compared on a daily basis using only the test
stations in figure 4.1. showing filtered models test KGE values. the x-axis is for
Random Forest scores and the y-axis is for XGBoost scores. It has a red line
showing 1:1 correspondence. The plot here shows the overall superior performance

of XGBoost since most points lie above the red line.
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Figure 4.1. KGE score comparison of Random Forest and XGBoost models for
each year by selecting days only having more than 25 station with 2mm/day or
higher precipitation value

Figure 4.2 shows the violin plots of the filtered KGE and its components over the
period 2015-2022.Comparisons of the KGE scores show that, on average, XGBoost
is associated with a higher distribution and a higher mean score compared to
Random Forest, and with a greater dispersion of anomalies. The higher anomalies
observed with XGBoost can be better explained by its increased sensitivity to
change and the fact that it is much more responsive to the IMERG data. As a result,

XGBoost is able to capture certain complex patterns.

The correlation scores compare the two models, and Random Forest has a better
mean and overall correlation, with a smaller distribution. XGBoost understands

more about variability (alpha) than Random Forest, while both have almost the
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same bias correction (beta). The KGE graph shows that the XGBoost bias
correction simulation outperforms Random Forest, mainly due to the improvement
in variability. The main reason for XGBoost's exceptional performance is that it
captures the variability (alpha) in the data, which improves model performance in
fluctuating precipitation patterns and shows that models are better at learning

complicated relationships.

Figure 4.2. KGE and component analyses between 2015-2022

4.1.3 Root Mean Squared Error

Table 4.1 shows the RMSE values, where the mean (median) values for IMERG,
RF, and XGBoost models are 7.08 (5.90), 4.00 (3.34), and 4.33 (3.58),
respectively, with Random Forest and XGBoost performing almost identically. The
performance comparison underscores the superiority of machine learning models in
terms of predictive accuracy, reducing the average RMSE by approximately 3

mm/day. The minimal performance difference between Random Forest and
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XGBoost further underscores the efficiency of each model, given the significant

performance difference for both models with respect to the filtered IMERG.

414 Evaluation of Models’ Performance for Precipitation Events and

Extreme Precipitation Events

Tables 4.3 and 4.4 show the POD scores for filtered IMERG, Random Forest and
XGBoost. Filtered IMERG scores decrease significantly with increasing
precipitation thresholds, indicating that struggles to predict extreme events.
Random Forest performs better at lower precipitation thresholds (POD1 and
POD?2). The PODS5 scores of both models are very similar and XGBoost is better at
predicting extreme events. All scores decrease as the precipitation threshold
increases. Overall, these two machine learning algorithms, Random Forest and
XGBoost, provide a significant improvement over filtered IMERG in predicting
precipitation events.

Table4.3. Probability of Detection scores of filtered IMERG and machine learning
models in general precipitation events (thresholds 1,2, and 5 mm/day)

POD1 POD2 POD5
Year | Filtered Filtered Filtered
IMERG RF XGBoost IMERG RF XGBoost IMERG RF XGBoost
2015 0.476 0.590 0.550 0.430 0.507 0.484 0.391 0.408 0.389
2016 0.488 0.649 0.601 0.467 0.624 0.587 0.430 0.492 0.483
2017 0.480 0.654 0.614 0.446 0.591 0.579 0.384 0.450 0.457
2018 0.604 0.713 0.665 0.548 0.601 0.571 0.482 0.431 0.449
2019 0.576 0.692 0.645 0.563 0.652 0.615 0.446 0.457 0.480
2020 0.526 0.668 0.628 0.490 0.627 0.613 0.397 0.476 0.500
2021 0.502 0.711 0.680 0.449 0.638 0.600 0.377 0.462 0.470
2022 0.459 0.685 0.628 0.407 0.593 0.566 0.343 0.427 0.418

Average| 0.514 | 0.670 | 0.626 | 0.475 | 0.604 | 0.577 | 0.406 | 0.450 | 0.456

Table 4.4. Probability of Detection scores of filtered IMERG and machine learning
models in extreme precipitation events (thresholds 10,20, and 50 mm/day)
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POD10 POD20 POD50
Year | Filtered Filtered Filtered
IMERG RF XGBoost IMERG RF XGBoost IMERG RF XGBoost

2015 0.337 0.270 0.310 0.286 0.214 0.305 0.282 0.204 0.296

2016 0.327 0.353 0.381 0.287 0.260 0.313 0.156 0.252 0.235

2017 0.304 0.306 0.344 0.297 0.204 0.234 0.288 0.136 0.136

2018 0.440 0.324 0.374 0.400 0.217 0.253 0.269 0.051 0.237

2019 0.368 0.338 0.402 0.275 0.289 0.311 0.294 0.184 0.476

2020 0.331 0.307 0.365 0.255 0.179 0.312 0.370 0.282 0.442

2021 0.313 0.362 0.395 0.282 0.247 0.279 0.194 0.194 0.222

2022 0.221 0.302 0.327 0.162 0.246 0.273 0.078 0.170 0.170
Average| 0.330 0.320 0.362 0.281 0.232 0.285 0.241 0.184 0.277

Tables 4.5 and 4.6 show the FAR scores of the filtered IMERG and machine
learning models. At all thresholds, filtered IMERG FAR scores are high, ranging
from a low of 0.522 at the lowest threshold (FARL1) to a high of 0.867 at the highest
threshold (FARS50). Filtered IMERG over predicts precipitation especially at high

thresholds indicating errors in precipitation reports. For both models, the correction

for false reports is very significant. Random Forest FAR scores are lower than
XGBoost for general precipitation events (FAR1, FAR2, and FAR5) and almost
equal for extreme precipitation events (FAR10, FAR20, and FAR50). Random

forest reduces false alarms better than XGBoost.

Table 4.5 False Alarm Ratio scores of filtered IMERG and machine learning
models in general precipitation events (thresholds 1, 2, and 5 mm/day)
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2015 0.537 0.422 0.439 0.562 0.409 0.410 0.580 0.328 0.382
2016 0.510 0.373 0.389 0.518 0.326 0.370 0.536 0.277 0.357
2017 0.530 0.390 0.391 0.523 0.335 0.400 0.566 0.288 0.440
2018 0.510 0.393 0.418 0.534 0.377 0.410 0.600 0.344 0.397
2019 0.543 0.395 0.392 0.542 0.354 0.383 0.592 0.318 0.361
2020 0.541 0.409 0.447 0.539 0.359 0.368 0.590 0.307 0.402
2021 0.507 0.372 0.398 0.506 0.353 0.372 0.533 0.284 0.362
2022 0.493 0.434 0.484 0.517 0.373 0.425 0.579 0.355 0.460




Table 4.6 False Alarm Ratio scores of filtered IMERG and machine learning
models in extreme precipitation events (thresholds 10,20, and 50 mm/day)

FAR10 FAR20 FAR50
Year | Filtered 11 e Filtered RE  |XGBoost Filtered RE  |XGBoost
IMERG IMERG IMERG
2015 0.653 0.013 0.014 0.775 0.002 0.003 0.896 0.000 0.000
2016 0.670 0.015 0.017 0.762 0.003 0.004 0.928 0.000 0.000
2017 0.646 0.012 0.013 0.739 0.002 0.003 0.855 0.000 0.000
2018 0.680 0.015 0.019 0.766 0.003 0.004 0.889 0.000 0.001
2019 0.677 0.011 0.014 0.740 0.003 0.005 0.782 0.000 0.001
2020 0.671 0.009 0.013 0.794 0.002 0.003 0.834 0.000 0.000
2021 0.600 0.012 0.014 0.706 0.002 0.005 0.870 0.000 0.000
2022 0.684 0.014 0.016 0.795 0.003 0.004 0.880 0.000 0.001

Average| 0.660 0.013 0.015 0.760 0.002 0.004 | 0.867 0.000 0.000

The CSI scores of filtered IMERG with machine learning models are shown in
Tables 4.7 and 4.8. Filtered IMERG has a very poor ability to predict precipitation
events and its accuracy decreases as the precipitation threshold increases. In
comparison, Random Forest has a better ability to predict precipitation events,
especially for the lower precipitation thresholds (CSI1 and CSI2). The CSI5 scores
between Random Forest and XGBoost are almost identical. XGBoost actually
performs slightly better for extreme precipitation events. Both models significantly
improve the CSI scores of filtered IMERG and precipitation event prediction.

Table 4.7 Critical Success Index of filtered IMERG and machine learning models
in general precipitation events (thresholds 1,2, and 5 mm/day)

2015 0.297 0.383 0.374 0.262 0.349 0.350 0.232 0.323 0.304

2016 0.299 0.450 0.429 0.274 0.463 0.429 0.248 0.398 0.378

2017 0.285 0.446 0.440 0.273 0.448 0.433 0.223 0.353 0.335

2018 0.355 0.470 0.449 0.309 0.426 0.405 0.255 0.332 0.334

2019 0.327 0.461 0.456 0.316 0.462 0.448 0.238 0.356 0.362

2020 0.300 0.435 0.412 0.276 0.448 0.439 0.220 0.375 0.375

2021 0.303 0.491 0.467 0.273 0.469 0.442 0.231 0.372 0.363

2022 0.283 0.440 | 0.398 0.253 0.422 0.392 0.193 0.322 0.303
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Table 4.8 Critical Success Index of filtered IMERG and machine learning models
in extreme precipitation events (thresholds 10,20, and 50 mm/day)

cslii0 Csli20 CSI50
Year | Filtered Filtered Filtered
IMERG RF XGBoost IMERG RF XGBoost IMERG RF XGBoost

2015 0.180 0.225 0.243 0.122 0.185 0.251 0.073 0.184 0.255

2016 0.176 0.292 0.290 0.118 0.232 0.251 0.044 0.237 0.193

2017 0.163 0.250 0.277 0.124 0.179 0.198 0.088 0.091 0.091

2018 0.197 0.270 0.284 0.148 0.188 0.186 0.078 0.038 0.145

2019 0.179 0.276 0.308 0.129 0.236 0.228 0.137 0.181 0.388

2020 0.168 0.260 0.274 0.097 0.149 0.214 0.114 0.268 0.374

2021 0.167 0.310 0.322 0.147 0.219 0.210 0.089 0.194 0.179

2022 0.130 0.242 0.247 0.079 0.211 0.205 0.030 0.154 0.127
Average| 0.170 0.266 0.281 0.120 0.200 0.218 0.082 0.169 0.219

The bias scores of the filtered IMERG and the machine learning models are shown

in Tables 4.9 and 4.10. Filtered IMERG scores greater than 1 represent very high

event overestimation up to the highest precipitation threshold. Overestimation

decreases with increasing precipitation thresholds, indicating less accuracy at lower

precipitation levels. For general precipitation events (Biasl, Bias2, and Bias5), the

bias scores for XGBoost and Random Forest generally have similar values,

indicating that their effects are quite close within these ranges. On the contrary,

Random Forest shows a strong underestimation for extreme precipitation events

(Bias10, Bias20 and Bias50) and the bias score decreases as the thresholds increase

to the lowest of 0.238 for Bias50, meaning that it strongly underestimates extreme

event occurrence compared to XGBoost.
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Table 4.9 Bias Score of filtered IMERG and machine learning models in general
precipitation events (thresholds 1,2, and 5 mm/day)

BIAS1 BIAS2 BIAS5
Year | Filtered RF XGBoost Filtered RF XGBoost Filtered RF XGBoost
IMERG IMERG IMERG

2015 1.479 1.138 1.043 1.302 0.916 0.855 1.149 0.625 0.637

2016 1.376 1.109 1.036 1.177 0.987 0.980 1.252 0.715 0.801

2017 1.586 1.142 1.043 1.304 0.910 0.964 1.063 0.668 0.797

2018 1.531 1.264 1.204 1.461 1.007 1.005 1.347 0.697 0.774

2019 1.657 1.268 1.097 1.664 1.048 1.031 1.400 0.684 0.810

2020 1.314 1.183 1.059 1.397 1.006 0.973 1.184 0.725 0.814

2021 1.324 1.234 1.138 1.080 1.014 0.976 1.060 0.683 0.785

2022 1.432 1.321 1.174 1.119 0.999 0.956 1.144 0.694 0.778
Average| 1.462 1.207 1.099 1.313 0.986 0.968 1.200 0.686 0.774

Table 4.10 Bias Score of models of filtered IMERG and machine learning models

in extreme precipitation events (thresholds 10,20, and 50 mm/day)

BIAS10 BIAS20 BIAS50
Year | Filtered Filtered Filtered
IMERG RF XGBoost IMERG RF XGBoost IMERG RF XGBoost

2015 1.318 0.399 0.568 1.319 0.287 0.442 0.889 0.249 0.396

2016 1.207 0.501 0.663 1.230 0.359 0.476 0.700 0.252 0.310

2017 1.010 0.451 0.601 1.034 0.273 0.381 0.848 0.273 0.386

2018 1.785 0.468 0.642 1.460 0.301 0.455 0.788 0.090 0.449

2019 1.407 0.480 0.659 1.133 0.423 0.548 0.757 0.188 0.647

2020 1.132 0.456 0.682 1.127 0.271 0.607 0.724 0.318 0.523

2021 1.001 0.497 0.589 0.841 0.333 0.500 0.630 0.306 0.333

2022 0.933 0.502 0.655 0.788 0.332 0.557 0.195 0.225 0.291
Average| 1.224 0.469 0.632 1.116 0.322 0.496 0.691 0.238 0.417

Table 4.11 shows the MBE scores of the filtered IMERG and machine learning

models. Filtered IMERG overestimates its predictions, while Random Forest and

XGBoost have similar performance with very low underestimation, indicating

overall model success.
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Table 4.11 Mean Bias Error scores of filtered IMERG and machine learning
models (mm/day)

MBE

Year | Filtered
IMERG
2015 0.298 | -0.129 | -0.129
2016 0.169 | -0.045 | -0.046
2017 0.103 | -0.070 | -0.079
2018 0.665 | -0.063 | -0.054
2019 0.278 | -0.061 | -0.066
2020 0.201 | -0.053 | -0.051
2021 -0.019 | -0.079 | -0.084
2022 -0.117 | -0.043 | -0.058
Average| 0.197 | -0.068 | -0.071

RF XGBoost

In summary, the Random Forest and XGBoost models significantly improved the
detection performance of IMERG. Although the performance of Random Forest
and XGBoost decreases for extreme events (Senocak et al., 2023), XGBoost is
better at predicting extreme events. Random forest significantly underestimates

extreme events.

4.2  Evaluation of Machine Learning Algorithms, Environmental Features

effects on Complex Topography and Shapley Related Graphs

The SHAP library provides an invaluable feature of plotting different graphs,
making models user-friendly, easy to understand, and accountable. After
calculating Shapley scores by Tree SHAP (Lundberg et al., 2020), plotting these

scores in different ways creates new perspectives for users and is more reliable.

421 Feature Importance Heatmap

Figure 4.3 shows an example heatmap of Random Forest for the year 2018.
(Appendix A: SHAP features importance scores as heatmap for Random Forest and
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XGBoost between 2015-2022). The top blue and white heatmap represents rainy
days. Observation data are checked for precipitation values greater than 2mm/day,
and then the number of stations greater than 2mm/day are counted and grouped to
be displayed in a heatmap. Dark blue-purple color represents more than 200
stations with more than 2 mm/day, blue color represents nearly 100 stations, and
white color represents 0 or nearly 0 stations. The lower heatmap reflects the order
of importance of each feature, color coded to clearly show their impact on the daily
models, with red representing the most important features, cyan the medium and
dark blue the least important features. The lower heatmap is also filtered to 25 or
more stations with 2mm/day or more precipitation to represent the temporal
distribution of the models used in the metric evaluations and to get more
representative results about the importance of the model features.

Topographic features are highly effective on precipitation-related model
predictions (Senocak et al., 2023) and IMERG, Latitude, Longitude, Elevation,
Distance to Coast, and Effective Terrain Height are the most important features for
each day (red) throughout the year, showing the importance of topographic
features. Other features such as facet effects are very small in the model output.
IMERG is selected as one of the most important features for almost all models.
Senocak et al (2023) show in their forecasting study that different machine learning
models, including XGBoost and Random Forest, consider numerical weather

prediction (NWP) models as the most important feature.

In winter and near-winter periods, the probability of liquid precipitation becomes
essential, although precipitation isn't always in liquid form. Conversely, in summer,
the probability of liquid precipitation does not vary (always 1), making it the least
important variable. As can be seen in Figure 4.3, the climate classes and facet
values do not significantly change the prediction results. However, the Random
Forest and XGBoost models reduce the dimensions for unrelated features by
assigning them an importance of 0, thus mitigating any potential problems these
features could pose to the model results. Daily changes in feature importance for
different models are evaluated by this graph.
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4.2.2 SHAP Absolute Mean Graphs

SHAP values quantify the impact of each feature on the model's prediction,
including both positive and negative contributions. Figure 4.4 shows the average
feature values of all samples generated for the day 2018-11-16. This indicates how
significant they are in the model. Consistent results between training and testing
confirm the reliability of the models. Most notably, Random Forest and XGBoost
give the highest priority to IMERG precipitation data, which is likely to signal
logical predictions. Topographic features such as elevation, ETH, latitude, and
longitude have significant effects that correlate with the Senocak et al. (2023)
study, suggesting that model bias are corrected according to environmental
relationships.

(a) RF =« I (b) werc. [

i o RF-Test - N
Train,, ... so—"-- gl
cev [N <= cev [ ~ =
pobabilityLiquidPrecipitation [ -2 probabiityLiquidPrecipitation [ -
vigun_7 [ 0 vigun_7 [ 2
tigun_3 [ 007 higun_3 [ 007
sum of 11 other features [ 2 sum of 11 other features [ 2
.|‘U I\‘, (\‘d 06 [T} 10 : Iy s ")‘\) ")“
mean(ISHAP valuel) Soomen
(c) L I I
XGB' EFH-"‘P XGB' ETH _m:
o o Mo Test = M-
Train .. g-- i coost [ 05
Long [l 012 Long [ 02
yigun_4 | 004 yigun_s [ w003

probabiltyLiquidPrecipitation | +0.02 probabilityLiquidPrecipitation | +0.03
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Figure 4.4. SHAP absolute mean plots (Feature Importance) for Random Forest (a)
Train dataset, (b) Test dataset and XGBoost (c) Train Dataset (d) Test Dataset
(selected day: 16/11/2018)
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4.2.3 Merging SHAP Absolute Mean Plots

The average of the daily absolute mean SHAP scores for filtered days is calculated
from the test scores for each feature to represent the overall effect of the features.
This usage also reduces the daily noise that may affect an individual model. Studies
show that provided features may be used differently by different models. (e.g.,
Senocak et al., 2023). Figure 4.5 shows the absolute mean SHAP plot from 2015 to
2022, plotted as a bar graph to provide a representation of the overall effect of
features on model outputs and to show how models use these features together.

Features are generally static and their variability does not change from day to day.

The most important features are IMERG, Distance to Coast (DC), Latitude (Lat),
Longitude (Long), Elevation (Elv), and Effective Terrain Height (ETH). In general,
the contribution of the features is slightly different. XGBoost gives more weight to
IMERG SHAP when calculating output values. The overall high importance of
XGBoost SHAP is due to the strong influence of IMERG on XGBoost predictions.

Average Absolute Mean of Variables for Random Forest and XGBoost 2015-2022

Random Forest
mmm XGBoost

0.7 1
0.6 1

0.5

069
042 043
0.4+
032
0.29
0.34
020
0.2+
016
015 0.14 014
012
011
X I l
0.
IMERG DC Lat Long Elv ETH

Variables

Absolute Mean

(¥

=

o

Figure 4.5: Absolute Mean SHAP values for most important features and model
comparison from 2015 — 2022
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4.2.4 Variation of Descriptor Importance in Space

Figure 4.6 and Figure 4.7 show the variation of descriptor importance in space for
Random Forest and XGBoost models separately for filtered days corresponding

summer season.

Summers in the Mediterranean and Central Anatolian regions are hot and dry with
minimal precipitation (Sensoy et al., 2008). Latitude SHAP plot analysis shows
that the models correctly capture this aridity in these regions, as indicated by their
low precipitation predictions in the summer season. The SHAP values for these
latitudes are slightly negative, indicating a decrease in predicted precipitation. On
the other hand, the positive SHAP values at higher latitudes indicate that the
models have captured the generally high amount of precipitation in the Black Sea

region.

The SHAP plots for longitude show that the models tend to increase their
precipitation over the western area during the summer months. More specifically,
the models give positive SHAP values for the western parts of the study area,
increasing model predictions of precipitation, and negative SHAP values for the
eastern regions, corresponding to a reduced effect in that area.

The SHAP plots for elevation show that the predictions for both models increase
with increasing elevation. Overall, this suggests that the models are capturing a lot
of variation that is positively correlated between precipitation and elevation,
indicating that the models are successfully correlating precipitation and elevation

values.

Distance to coast values have mostly similar contribution in predicting
precipitation during summer months as shown in the SHAP plot, this could perhaps
be explained by the dry climatic conditions that normally characterize the
Mediterranean region in summer, thus reducing the overall impact of distance to

coast on summer precipitation.
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Figure4.6. Variation of Descriptor Importance in Space (Summer Season) for
Random Forest Model
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Figure 4.7. Variation of Descriptor Importance in Space (Summer Season) for
XGBoost Model

Figure 4.8 and figure 4.9 show variation of descriptor importance in space for
Random Forest and XGBoost models separately for filtered days corresponding

winter season.
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The Mediterranean and Black Sea regions receive high amounts of precipitation
during the winter season (Sensoy et al., 2008). This can be easily seen from the
latitude SHAP plots of the models. The models also detect the dry plateau in the
Central Anatolian region by giving a negative effect to values corresponding to this
plateau, indicating the ability of the models to learn complex relationships in the
data.

Sensoy et al. (2008) showed with the seasonal precipitation distribution map of
Turkiye that the study area does not have a significant change in the east-west
directions of precipitation in winter. Considering the longitude SHAP values in
winter indicates that the precipitation falling in the study area does affect the
longitude significantly.

Analysis of the Elevation SHAP plots in different seasons shows that the models
can capture the correlation between precipitation and elevation without

distinguishing between summer and winter seasons.

Winter is a season of precipitation for the Black Sea and Mediterranean regions
(Sensoy et al., 2008). Therefore, the distance to coast feature ended up being more
informative for the models in winter seasons. The machine learning models are
able to capture more precipitation along the coasts and assign them positive SHAP
values. The fact that the models can play with the influence of the Distance to
Coast feature according to seasonal variations further proves their ability to

efficiently handle the complex relationships within the data.
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Figure 4.8. Variation of Descriptor Importance in Space (Winter Season) for
Random Forest Model
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4.2.5 Potential SHAP Limitations and Their effects in this study

Representing feature importance with SHAP scores has some inherent limitations
that can lead to misleading results if not handled carefully. High correlations of
complex features and training set bias distort the interpretation of SHAP. Looking
at feature dependencies helps, but does not solve the problem that SHAP scores are
affected by complex feature combinations. These challenges are partly overcome
by the intentional selection of the model in this study to be able to handle
correlated data efficiently; thus, this study narrows its focus to tree-based models
such as regression trees, random forests, and XGBoost, which are better able to
handle such complexity (Rabinowicz & Rosset, 2022). Furthermore, high
correlations between features can mislead SHAP scores and lead to
misinterpretation of feature importance. The first method used in this area is to fool
SHAP algorithms by creating perturbations in the background distribution
(Baniecki & Biecek, 2022). They used genetic algorithms to manipulate the
background data and influence the calculation and interpretation of SHAP scores to
illustrate how correlations can affect SHAP scores and their reliability. This study
addresses these issues through data preparation, noise reduction, correlation testing,
and strategic model selection of tree-based models to ensure the representational

and reliable nature of SHAP scores.

67






CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Precipitation is a tremendous gear in the climate and water cycle system (Kidd and
Huffman, 2011). The sustainability of water resource management and agricultural
studies depends on precipitation measurements (Hui-Mean et al., 2018; Kidd et al.,
2009; Thornes et al., 2010; Kidd and Huffman, 2011; Zhou et al., 2022). Accurate
precipitation data contribute to a better representation of precipitation patterns and

water availability.

This study suggests that bias correction IMERGLate satellite product with ground-
based observations and environmental parameters such as elevation, effective
terrain height, latitude, longitude, distance to coast to improve its spatial
representation. Bias correction is an important issue, and there is increasing interest
in using machine learning algorithms for bias correction due to their efficiency
(Zeng et al., 2021; Wang et al., 2020; et al., 2021b; Lao et al., 2021). Tree-based
machine learning models propose more interpretable and predictive accuracy
compared to traditional models (Basagoglu et al., 2022; Chakraborty et al., 2021a;
Chang et al., 2016; Dumitrescu et al., 2021). In this study, random forest (RF)
(Breiman, 2001) and extreme gradient boosting (XGBoost) (Chen and Guestrin,
2016) tree-based machine learning algorithms are used to train the daily model.
Machine learning models have been proven to recognize complex structures and
patterns from large amounts of structured and unstructured data (Li, 2022). The
eXtreme Gradient Boosting (XGBoost) method is characterized by its remarkable
ability to capture complex and nonlinear relationships between precipitation and
environmental features (Ali et al., 2023; Zhu et al., 2023).

The performance of the machine learning models is evaluated in chapter 4. The

models were filtered to show their performance meaningfully. The models
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outperformed on negative R2 values of filtered IMERG. XGBoost performed
slightly better on KGE due to the alpha value. Mean Bias Error of Random Forest
(-0.068 mm/day) and XGBoost (-0.071 mm/day) shows both models slightly
underestimate precipitation events. While filtered IMERG (0.197 mm/day)
overestimates. The overall performance of the models is ensured with these
metrics, and then the models are evaluated with thresholds to analyze their specific
event performance. The Probability of Detection scores show that Random Forest
is better at predicting small events (1 mm/day, 2 mm/day). The XGBoost models
are more effective at higher thresholds (10 mm/day and above), demonstrating their
reliability in detecting larger peak events. IMERG achieves high FAR scores,
which increase at higher thresholds. The machine learning models reduce the
scores. The bias score of extreme thresholds (Bias10, Bias20 and Bias50) shows
that Random Forest (0.469, 0.322, and 0.238) underestimates extreme event
occurrence compared to XGBoost (0.632, 0.496, and 0.417). IMERG overestimates
precipitation events. Both models improve the CSI. Random Forest performs better
for the lower precipitation thresholds (CSI1 and CSI2). XGBoost performs better

for extreme precipitation events (CSI10 and above).

Machine learning models are referred to as black boxes due to their complex
decision-making processes (Li, 2022). The concept of Explainable Artificial
Intelligence makes model decisions transparent and explains how input data is
transformed into output (Li, 2022). Models with SHAP (Shapley Additive
Explanation) (Lundberg and Lee, 2017; Lundberg et al., 2020) are among the best
approaches to explain feature contributions in models (Li, 2022). SHAP draws a
relationship between input and output values, showing how features are mostly

used by the model during the prediction step and influence the outcome (Li, 2022).

The SHAP feature importance scores of the daily models are plotted annually in the
form of a heat map to show their impact. From the heatmaps, the most important
features were IMERG, Ilatitude, longitude, elevation, distance to coast, and

effective terrain height. The least important features are facets and climate zones.
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The probability of liquid precipitation affected the models only in winter seasons,

because in summer its value is always 1.

The interpretation of important features by the models was analyzed using the
combination of absolute mean SHAP plots. The mean SHAP plots of the XGBoost
models had higher importance scores than the IMERG. To compensate for this, the
mean SHAP values of XGBoost are assumed to be slightly higher than those of

Random Forest.

Series of combinations of 2015-2022 SHAP values with variation of descriptor
plots are created separately for the summer and winter seasons of the Random
Forest and XGBoost models to show how the models evaluate features in different
seasons. Note that these procedures are performed first for the models with 25 or
more stations with 2 mm/day or more precipitation. The results are corrected to
remove the dry day bias. These features were chosen to be static during the
combination of SHAP values to avoid the addition of bias and noise. This again
shows that the complex relationships between features and precipitation data are

understood by the models.

Evaluation of variation in descriptor plots. The models can correlate precipitation
with elevation data regardless of the season. The models understand that the
summer seasons are dry in the Mediterranean and Central Anatolian regions
(Sensoy et al., 2008), and this is clearly seen in the latitude and distance to coast
SHAP plots. In summer, only at high latitude values, which corresponds to the
Black Sea region, the models detect the amount of precipitation and give positive
SHAP values, but the models cannot make a high interpretation for the distance to
coast data in summer. In the winter seasons, we observe that the models increase
the precipitation in these regions in the latitude SHAP plot, which is understood by
the fact that precipitation is effective in the Black Sea and the Mediterranean. In
addition, in the Latitude SHAP plot, the models provide more meaningful
predictions by decreasing precipitation in locations corresponding to the Central
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Anatolian region. The Distance to Coast graph has become more meaningful in the

winter months.

The results confirm that model training effectively improves the performance of
IMERG satellite precipitation products with satisfactory statistical results. New
methods to reduce bias in satellite precipitation products can be further explored.
More features can be added, or feature engineering will even tune the input
variables. To illustrate, for further research, feature engineering techniques can be
used to improve the contribution of these features. Creating synthetic parameters
by combining these features with elevation, like other contributing numerical
features, can increase the contribution of these features. Alternatively, another
numerical feature such as elevation can be considered categorical, including groups
as low, medium, and high, and then converted to a one-hot coding to use facets and

climate zones with them.

Random forests work well for low precipitation and XGBoost works better for high
precipitation. The combination of both model results may provide a very promising

approach toward increasing the accuracy of satellite-based precipitation estimates.

72



REFERENCES

Acosta, M.R.C., Ahmed, S., Garcia, C.E., Koo, I., 2020. Extremely randomized
trees-based scheme for stealthy cyber-attack detection in smart grid
networks. IEEE Access 8, 19921-19933.
https://doi.org/10.1109/ACCESS.2020.2968934.

Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021).
The arithmetic optimization algorithm. Computer methods in applied
mechanics and engineering, 376, 1136009.

Adadi, A., Berrada, M., 2018. Peeking inside the black-box: a survey on
explainable artificial intelligence (XAIl). IEEE Access 6, 52138-52160.
https://doi.org/10.1109/ access.2018.2870052.

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., ... &
Nelkin, E. (2003). The version-2 global precipitation climatology project
(GPCP) monthly precipitation analysis (1979—present). Journal of
hydrometeorology, 4(6), 1147-1167.

Aghelpour, P., Guan, Y., Bahrami-Pichaghchi, H., Mohammadi, B., Kisi, O., &
Zhang, D. (2020). Using the MODIS sensor for snow cover modeling and
the assessment of drought effects on snow cover in a mountainous area.
Remote Sensing, 12(20), 3437.

Agushaka, J. O., Ezugwu, A. E., & Abualigah, L. (2022). Dwarf mongoose
optimization algorithm. Computer methods in applied mechanics and
engineering, 391, 114570.

73



Ali, S., Khorrami, B., Jehanzaib, M., Tarig, A., Ajmal, M., Arshad, A., ... & Khan,
S. N. (2023). Spatial downscaling of GRACE data based on XGBoost
model for improved understanding of hydrological droughts in the Indus
Basin Irrigation System (IBIS). Remote Sensing, 15(4), 873.

Akinyemi, D.F., Ayanlade, O.S., Nwaezeigwe, J.O., Ayanlade, A., 2020. A
comparison of the accuracy of multi-satellite precipitation estimation and
ground meteorological records over southwestern Nigeria. Remote Sens.
Earth Syst. Sci. 3, 1-12.

Amjad, M., Yilmaz, M. T., Yucel, I., & Yilmaz, K. K. (2020). Performance
evaluation of satellite-and model-based precipitation products over varying
climate and complex topography. Journal of Hydrology, 584, 124707.

Apley, D. W., & Zhu, J. (2020). Visualizing the effects of predictor variables in
black box supervised learning models. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 82(4), 1059-1086.

Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L.
D., ... & Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate
data record from multisatellite observations for hydrological and climate
studies. Bulletin of the American Meteorological Society, 96(1), 69-83.

Baniecki, H., Kretowicz, W., & Biecek, P. (2022, September). Fooling partial
dependence via data poisoning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (pp. 121-136). Cham:
Springer Nature Switzerland.

Basagoglu, H., Chakraborty, D., Do Lago, C., Gutierrez, L., S ,ahinli, M.A.,
Giacomoni, M., Furl, C., Mirchi, A., Moriasi, D., S .eng” or, S.S., 2022. A
review on interpretable and explainable artificial intelligence in
hydroclimatic applications. Water 14, 1230.
https://doi.org/10.3390/w14081230.

Beck, H.E., et al., 2020. Global-scale evaluation of 22 precipitation datasets using
gauge observations and hydrological modeling. In: Satellite Precipitation
Measurement. Springer, pp. 625-653.

74



Beck, H.E., Pan, M., Roy, T., Weedon, G.P., Pappenberger, F., Van Dijk, A.l.J.M.,
Huffman, G.J., Adler, R.F., Wood, E.F., 2019. Daily evaluation of 26
precipitation datasets using Stage-1V gauge-radar data for the CONUS.
Hydrol. Earth Syst. Sci. 23, 207-224. https://doi.org/10.5194/hess-23-207-
20109.

Ben Jabeur, S., Khalfaoui, R., Ben Arfi, W., 2021. The effect of green energy,
global environmental indexes, and stock markets in predicting oil price
crashes: evidence from explainable machine learning. J. Environ. Manag.
298, 113511 https://doi. org/10.1016/j.jenvman.2021.113511.

Biyik, G., Unal, Y., & Onol, B. (2009, September). Assessment of Precipitation
Forecast Accuracy over Eastern Black Sea Region using WRF-ARW. In
11th Plinius Conference on Mediterranean Storms (p. Plinius11).

Boushaki, F. 1., Hsu, K. L., Sorooshian, S., Park, G. H., Mahani, S., & Shi, W.
(2009). Bias adjustment of satellite precipitation estimation using ground-
based measurement: A case study evaluation over the southwestern United
States. Journal of Hydrometeorology, 10(5), 1231-1242.

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi:10.1023/A:
1010933404324.

Castelvecchi, D. (2016). Can we open the black box of Al?. Nature News,
538(7623), 20.

Chakraborty, D., Basagoglu, H., Gutierrez, L., Mirchi, A., 2021a. Explainable Al
reveals new hydroclimatic insights for ecosystem-centric groundwater
management. Environ. Res. Lett. 16, 114024 https://doi.org/10.1088/1748-
9326/ac2fde.

Chakraborty, D., Basagoglu, H, Winterle, J., 2021b. Interpretable vs.
noninterpretable machine learning models for data-driven hydro-
climatological process modeling. Expert Syst. Appl. 170, 114498
https://doi.org/10.1016/j.eswa.2020.114498.

75



Chang, M., and L. Harrison (2005), Field assessments on the accuracy of spherical
gauges in rainfall measurements, Hydrol. Processes., 19, 403-412.

Chang, Y.-C., Chang, K.-H., Chu, H.-H., Tong, L.-1., 2016. Establishing decision
tree-based short-term default credit risk assessment models. Commun. Stat.
Theory Methods 45, 6803-6815.
https://doi.org/10.1080/03610926.2014.968730.

Chaudhary, S., & Dhanya, C. T. (2019, October). Investigating the performance of
bias correction algorithms on satellite-based precipitation estimates. In
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI (Vol.
11149, pp. 279-285). SPIE.

Chen, C., Hu, B., Li, Y. 2021. Easy-to-use spatial random-forest-based
downscaling-calibration method for producing precipitation data with high
resolution and high accuracy. Hydrol. Earth Syst. Sci. 25, 5667-5682.

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining (pp. 785-794).

Chiaravalloti, F., Brocca, L., Procopio, A., Massari, C., Gabriele, S., 2018.
Assessment of GPM and SM2RAIN-ASCAT rainfall products over
complex terrain in southern Italy. Atmos. Res. 206, 64-74.
https://doi.org/10.1016/j.atmosres.2018.02.019.

Chivers, B. D., Wallbank, J., Cole, S. J., Sebek, O., Stanley, S., Fry, M., &
Leontidis, G. (2020). Imputation of missing sub-hourly precipitation data in
a large sensor network: A machine learning approach. Journal of
Hydrology, 588, 125126.

Chollet, F. (2021). Deep learning with Python. Simon and Schuster.

76



Constantinescu, G. S., W. F. Krajewski, C. E. Ozdemir, and T. Tokyay (2007),
Simulation of airflow around rain gauges: Comparison of LES with RANS
models, Adv. Water Resour., 30, 43-58.

Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2002: A
knowledge based approach to the statistical mapping of climate. Climate
Res., 22, 99-113.

Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets.
Int. J. Climatol, 26, 707-721.

Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J.
Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of
climatological temperature and precipitation across the conterminous united
states. Int. J. Climatol., 28, 2031-2064.

Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W.,
Chang, C. H., Delrieu, G., Hong, Y., Hsu, Y.C., Lavado-Casimiro, W.,
Manz, B., Moges, S., Nikolopoulos, E.I., Sahlu, D., Salerno, F., Rodriguez-
Sanchez, J.-P., Vergara, H.J., Yilmaz, K.K., 2016. Multiregional satellite
precipitation products evaluation over complex Terrain. J. Hydrometeorol.
17, 1817-1836. https://doi.org/10.1175/JHM D-15-0197.1.

Derin, Y., Yilmaz, K.K., 2014. Evaluation of multiple satellite-based precipitation
products over complex topography. J. Hydrometeorol. 15, 1498-1516.
https://doi.org/10. 1175/JHM-D-13-0191.1.

Demir, 1., Kilig, G., & Coskun, M. (2008). Tiirkiye ve bolgesi icin PRECIS
bolgesel iklim modeli ¢alismalar1. Iklim Degisikligi ve Cevre, 1(1), 11-17.

Dinku, T., Anagnostou, E.N., Borga, M., 2002. Improving radar-based estimation
of rainfall over complex terrain. J. Appl. Meteorol. 41, 1163-1178.
https://doi.org/10. 1175/1520-0450(2002) 0412.0.CO;2.

Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S. J., &
Ropelewski, C. F. (2007). Validation of satellite rainfall products over East

77



Africa's complex topography. International Journal of Remote Sensing,
28(7), 1503-1526.

Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of
dimensionality. AMS math challenges lecture, 1(2000), 32

Dumitrescu, E., HU" e, S., Hurlin, C., Tokpavi, S., 2021. Machine learning for
credit scoring: improving logistic regression with non-linear decision-tree
effects. Eur. J. Oper. Res. https://doi.org/10.1016/j.ejor.2021.06.053.

Efron B (2000) The bootstrap and modern statistics. J Am Stat Assoc
95(452):1293-1296. https://doi.org/10.1080/01621459.2000.10474333.

El-Alfy, E. S., and Mohammed, S. (2020). A review of machine learning for big

data analytics: Bibliometric approach. Technol. Analysis Strategic Manag.
32, 984-1005. doi:10. 1080/09537325.2020.1732912.

El Kenawy, A. M., Lopez-Moreno, J. I., McCabe, M. F., & Vicente-Serrano, S. M.
(2015). Evaluation of the TMPA-3B42 precipitation product using a high-

density rain gauge network over complex terrain in northeastern Iberia.
Global and Planetary Change, 133, 188-200.

Ersdz, B., Sagiroglu, S. E. R. E. F., & Biilbiil, H. A. L. I. L. (2022). Methods of

Explainable  Artificial Intelligence (XAl), Trustworthy Artificial

Intelligence (TAI) and Interpretable Machine Learning (IML) in Renewable
Energy. icsmartgrid journal, 6(4).

EU-DEM v1.1. Available online: https://land.copernicus.eu/imagery-in-situ/eu-
dem/eu-dem-v1.1?tab=metadata.

Fan, J., & Li, R. (2006). Statistical challenges with high dimensionality: Feature
selection in knowledge discovery.

arXiv preprint math/0602133.
https://doi.org/10.48550/arXiv.math/0602133.

78



Feng, D. C., Wang, W. J., Mangalathu, S., & Taciroglu, E. (2021). Interpretable
XGBoost-SHAP machine-learning model for shear strength prediction of
squat RC walls. Journal of Structural Engineering, 147(11), 04021173.

Folland, C. K. (1988), Numerical models of the raingauge exposure problem, field
experiments and an improved collector design, Q. J. R. Meteorol. Soc., 114,
1485-1516.

Friedman, J. H.: Greedy function approximation: a gradient boosting machine,
Ann. Stat., 29, 1189-1232, https://doi.org/10.1214/a0s/1013203451, 2001.

Gampe, D., Ludwig, R., 2017. Evaluation of gridded precipitation data products for
hy drological applications in complex topography. Hydrology 4, 53.
https://doi.org/10. 3390/hydrology4040053.

General Directorate of Meteorology (GDM), 2023. 2023 yagis degerlendirmesi.
Received from
https://www.mgm.gov.tr/FILES/arastirma/yagisdegerlendirme/2023yagisde
gerlendirmesi.pdf

Gebregiorgis, A. S., Kirstetter, P. E., Hong, Y. E., Gourley, J. J., Huffman, G. J.,
Petersen, W. A., ... & Schwaller, M. R. (2018). To what extent is the day 1
GPM IMERG satellite precipitation estimate improved as compared to
TRMM TMPA-RT?. Journal of Geophysical Research: Atmospheres,
123(3), 1694-1707.

Gehne, M., Hamill, T.M., Kiladis, G.N., Trenberth, K.E., 2016. Comparison of
global precipitation estimates across a range of temporal and spatial scales.
J. Clim. 29 (21), 7773-7795.

Geurts, P., Louppe, G., 2011. Learning to rank with extremely randomized trees.
In: Proceedings of the Learning to Rank Challenge. PMLR, pp. 49-61.

Guan, Y., Mohammadi, B., Pham, Q. B., Adarsh, S., Balkhair, K. S., Rahman, K.
U, ... & Tri, D. Q. (2020). A novel approach for predicting daily pan
evaporation in the coastal regions of Iran using support vector regression

79


https://www.mgm.gov.tr/FILES/arastirma/yagisdegerlendirme/2023yagisdegerlendirmesi.pdf
https://www.mgm.gov.tr/FILES/arastirma/yagisdegerlendirme/2023yagisdegerlendirmesi.pdf

coupled with krill herd algorithm model. Theoretical and Applied
Climatology, 142, 349-367.

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91.

Gupta, H.V., Sorooshian, S., Yapo, P.O., 1998. Toward improved calibration of
hydrologic models: multiple and noncommensurable measures of
information. Water Resources Research 34 (4), 751-763.

Gong, J., Ou, J., Qiu, X., Jie, Y., Chen, Y., Yuan, L., et al. (2020). A Tool for Early
Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter
Study Using the Risk Nomogram in Wuhan and Guangdong, China. Clin.
Infect. Dis. 71, 833-840. doi: 10.1093/cid/ciaad43.

Gottardi, F., Obled, C., Gailhard, J., Paquet, E., 2012. Statistical reanalysis of
precipitation fields based on ground network data and weather patterns:
Application over French mountains. J. Hydrol. 432, 154-167.

Han, Y., Wei, Z., & Huang, G. (2024). An imbalance data quality monitoring based
on SMOTE-XGBOOST supported by edge computing. Scientific Reports,
14(1), 10151.

Hancock, J. T. & Khoshgoftaar, T. M. Catboost for big data: An interdisciplinary
review. J. Big Data 7(1), 94 (2020).

Hanna, E. (1995), How effective are tipping-bucket rain gauges? A review,
Weather, 50, 336-342.

He, Z., Yang, Y., Fang, R., Zhou, S., Zhao, W., Bali, Y., ... & Wang, B. (2023).
Integration of shapley additive explanations with random forest model for
quantitative precipitation estimation of mesoscale convective systems.
Frontiers in Environmental Science, 10, 1057081.

80



He, X., Chaney, N. W., Schleiss, M., & Sheffield, J. (2016). Spatial downscaling of
precipitation using adaptable random forests. Water resources research,
52(10), 8217-8237.

Heidinger, H., Yarlequé, C., Posadas, A., Quiroz, R., 2012. TRMM rainfall
correction over the Andean Plateau using wavelet multi-resolution analysis.
Int. J. Remote Sens. 33, 4583-4602.
https://doi.org/10.1080/01431161.2011.652315.

Herold, N., Alexander, L.V., Donat, M.G., Contractor, S., Becker, A., 2016. How
much does it rain over land? Geophys. Res. Lett. 43, 341-348.
https://doi.org/10.1002/ 2015GL066615.

Hirpa, F. A., Gebremichael, M., & Hopson, T. (2010). Evaluation of high-
resolution satellite precipitation products over very complex terrain in
Ethiopia. Journal of Applied Meteorology and Climatology, 49(5), 1044-
1051.

Hobbs, P. V. (1989). Research on clouds and precipitation: Past, present, and
future, part 1. Bull. Amer. Meteor. 70 (3), 282-285. doi:10.1175/1520-0477-
70.3.282.

Hobouchian, M.P., Salio, P., Garcia Skabar, Y., Vila, D., Garreaud, R., 2017.
Assessment of satellite precipitation estimates over the slopes of the
subtropical Andes. Atmos. Res. 190, 43-54.
https://doi.org/10.1016/j.atmosres.2017.02.006.

Hoffmann, M., Schwartengraber, R., Wessolek, G., & Peters, A. (2016).
Comparison of simple rain gauge measurements with precision lysimeter
data. Atmospheric Research, 174, 120-123.

Hong, Y., Hsu, K. L., Sorooshian, S., & Gao, X. (2004). Precipitation estimation
from remotely sensed imagery using an artificial neural network cloud
classification system. Journal of Applied Meteorology, 43(12), 1834-1853.

81



Hosking, J. G., C. D. Stow, and S. G. Bradley (1985), Corrections for horizontal
winds and wind shear in raindrop size spectrometers, J. Atmos. Oceanic
Technol., 2, 181-189.

Hossain, F., Lettenmaier, D.P., 2006. Flood prediction in the future: Recognizing
hydrologic issues in anticipation of the Global Precipitation Measurement
mission. Water Resour. Res. 42 (11).

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D,
Kojima, M., ... & lguchi, T. (2014). The global precipitation measurement
mission. Bulletin of the American meteorological Society, 95(5), 701-722.

Hsu, K. L., Gao, X., Sorooshian, S., & Gupta, H. V. (1997). Precipitation
estimation from remotely sensed information using artificial neural
networks. Journal of Applied Meteorology and Climatology, 36(9), 1176-
1190.

Hsu, K. L., Gupta, H. V., Gao, X., & Sorooshian, S. (1999). Estimation of physical
variables from multichannel remotely sensed imagery using a neural
network: Application to rainfall estimation. Water Resources Research,
35(5), 1605-1618.

Huffman, G. J., Adler, R. F., Bolvin, D. T., Nelkin, E. J., Hossain, F., &
Gebremichael, M. (2010). Satellite rainfall applications for surface
hydrology. M. Gebremichael & F. Hossain (Eds.), 3-22.

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G,, ... &
Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis
(TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates
at fine scales. Journal of hydrometeorology, 8(1), 38-55.

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Y00,
S. H. (2015). NASA global precipitation measurement (GPM) integrated
multi-satellite retrievals for GPM (IMERG). Algorithm theoretical basis
document (ATBD) version, 4(26), 2020-05.

82



Huffman, G. (2019). IMERG V06 quality index. NASA, Available for download
from: https://gpm. nasa. gov/sites/default/files/2020-02/IMERGV06_QI_0.
pdf.

Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin,
E.J., Sorooshian, S., Tan, J., Xie, P., 2018. NASA Global Precipitation
Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM
(IMERG). Algorithm Theoretical Basis Document (ATBD) Version 5.2.

Hughes, M., Hall, A., Fovell, R.G., 2009. Blocking in areas of complex
topography, and its influence on rainfall distribution. J. Atmos. Sci. 66,
508-518

Hui-Mean, F., Yusop, Z., Yusof, F., 2018. Drought analysis and water resource
availability using standardised precipitation evapotranspiration index.
Atmos. Res. 201, 102-115.

Islam, T., Rico-Ramirez, M.A., Han, D., Srivastava, P.K., Ishak, A.M., 2012.
Performance evaluation of the TRMM precipitation estimation using
ground-based radars from the GPM validation network. J. Atmos. Solar-
Terrestrial Phys. 77, 194-208. https://doi. org/10.1016/j.jastp.2012.01.001.

Ibrahim, B., Wisser, D., Barry, B., Fowe, T., Aduna, A., 2015. Hydrological
predictions for small ungauged watersheds in the Sudanian zone of the
Volta basin in West Africa. J. Hydrol.: Reg. Stud. 4, 386-397.

Iyigun, C., Tiirkes, M., Batmaz, I., Yozgatligil, C., Purutcuoglu, V., Kog, E. K., &
Ozturk, M. Z. (2013). Clustering current climate regions of Turkey by using
a multivariate statistical method. Theoretical and applied climatology, 114,
95-106.

Jabeur, S. Ben, Ballouk, H., Mefteh-Wali, S., Omri, A., 2022. Forecasting the
macrolevel determinants of entrepreneurial opportunities using artificial
intelligence  models. Technol. Forecast. Soc. Chang. 175, 121353
https://doi.org/10.1016/j. techfore.2021.121353.

83



Jafarpour, M., Adib, A., Lotfirad, M., 2022. Improving the accuracy of satellite and
reanalysis precipitation data by their ensemble usage. Appl. Water Sci. 12,
1-15.

Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., Wang, J.,
2021. Evaluation of the ERAS reanalysis precipitation dataset over Chinese

Johnstone, I. M., & Titterington, D. M. (2009). Statistical challenges of high-
dimensional data. (Vol. 367, pp. 4237-4253). The Royal Society
Publishing.

Khan, N. M., Madhav C, N., Negi, A., & Thaseen, I. S. (2020). Analysis on
improving the performance of machine learning models using feature
selection technique. In Intelligent Systems Design and Applications: 18th
International Conference on Intelligent Systems Design and Applications
(ISDA 2018) held in Vellore, India, December 6-8, 2018, Volume 2 (pp.
69-77). Springer International Publishing.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2016). Fast Bayesian
Optimization of Machine Learning Hyperparameters on Large Datasets.
Neural Netw. 106, 294-302. doi:10.1093/0b0/9780195389661-0226

Krakauer, N. Y., Pradhanang, S. M., Lakhankar, T., & Jha, A. K. (2013).
Evaluating satellite products for precipitation estimation in mountain
regions: A case study for Nepal. Remote Sensing, 5(8), 4107-4123.

Kidd, C., and Huffman, G. “Global precipitation measurement. Meteorological
Applications”, 18(3), 334-353 (2011).

Kidd C, Levizzani V, Turk J, Ferraro R. 2009. Satellite precipitation measurements
for water resource monitoring. Journal of the American Water Resources
Association 45: 567-579.

Kucera, P.A., Ebert, E.E., Turk, F.J., Levizzani, V., Kirschbaum, D., Tapiador, F.J.,
Loew, A., Borsche, M., 2013. Precipitation from space: advancing earth

84



system science. Bull.  Am. Meteorol. Soc. 94, 365-375.

https://doi.org/10.1175/BAMS-D-11-00171.1.

Lao, P., Liu, Q., Ding, Y., Wang, Y., Li, Y., and Li, M. (2021). Rainrate estimation
from FY-4A cloud top temperature for mesoscale convective systems by
using machine learning algorithm. Remote. Sens. 13, 3273.

d0i:10.3390/rs13163273.

Lei, H., Li, H., Zhao, H., Ao, T., Li, X., 2021. Comprehensive evaluation of
satellite and reanalysis precipitation products over the eastern Tibetan
plateau characterized by a high diversity of topographies. Atmos. Res. 259,

105661.

Levizzani, V., Cattani, E., 2019. Satellite remote sensing of precipitation and the
terrestrial water cycle in a changing climate. Remote Sens. 11 (19), 2301.

Li, H., Zhang, Y., Lei, H., & Hao, X. (2023). Machine Learning-Based Bias
Correction of Precipitation Measurements at High Altitude. Remote

Sensing, 15(8), 2180.

Li, Z. (2022). Extracting spatial effects from machine learning model using local
interpretation method: An example of SHAP and XGBoost. Computers,

Environment and Urban Systems, 96, 101845.

Li, X., Wu, C., Meadows, M. E., Zhang, Z., Lin, X., Zhang, Z., et al. (2021a).
Factors underlying spatiotemporal variations in atmospheric PM2.5
concentrations in Zhejiang Province, China. Remote Sens. 13 (15), 3011.

d0i:10.3390/rs13153011.

Li, X., Yang, Y., Mi, J., Bi, X., Zhao, Y., Huang, Z., et al. (2021b). Leveraging
machine learning for quantitative precipitation estimation from Fengyun-4
geostationary observations and ground meteorological measurements.

Atmos. Meas. Tech. 14, 7007—7023. doi:10.5194/amt-14-7007-2021.

Lin, X., Fan, J., Hou, Z. J., & Wang, J. (2023). Machine learning of key variables
impacting extreme precipitation in various regions of the contiguous United

85



States. Journal of Advances in Modeling Earth Systems, 15(3),
e2022MS003334.

Lin, A., & Wang, X. L. (2011). An algorithm for blending multiple satellite
precipitation estimates with in situ precipitation measurements in Canada.
Journal of Geophysical Research: Atmospheres, 116(D21).

Linardatos, P., Papastefanopoulos, V., Kotsiantis, S., 2020. Explainable ai: a
review of machine learning interpretability methods. Entropy 23, 18.
https://doi.org/ 10.3390/e23010018.

Lo Conti, F., Hsu, K., Noto, L.V., Sorooshian, S., 2014. Evaluation and
comparison of satellite precipitation estimates with reference to a local area
in the Mediterranean Sea. Atmos. Res. 138, 189-204.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... &
Lee, S. I. (2020). From local explanations to global understanding with
explainable Al for trees. Nature machine intelligence, 2(1), 56-67.

Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized
feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model
predictions. Advances in neural information processing systems, 30.

Mantas, V. M., Liu, Z., Caro, C., & Pereira, A. J. S. C. (2015). Validation of
TRMM multi-satellite precipitation analysis (TMPA) products in the
Peruvian Andes. Atmospheric Research, 163, 132-145.

Marani, M., 2005. Non-power-law-scale properties of rainfall in space and time.
Water Resour. Res. 41 (8).

Mastrantonas, N., Bhattacharya, B., Shibuo, Y., Rasmy, M., Espinoza-D avalos,
G., Solomatine, D., 2019. Evaluating the Benefits of Merging Near-Real-

86



Time Satellite Precipitation Products: A Case Study in the Kinu Basin
Region, Japan. J. Hydrometeorol. 20 (6), 1213-1233.

Mayor, Y.G., Tereshchenko, I., Fonseca-Hernandez, M., Pantoja, D.A., Montes,
J.M., 2017. Evaluation of error in IMERG precipitation estimates under
different topographic conditions and temporal scales over Mexico. Remote
Sens. 9, 1-18. https://doi.org/ 10.3390/rs9050503.

Mei, Y., Anagnostou, E.N., Nikolopoulos, E.I., Borga, M., 2014. Error analysis of
satellite precipitation products in mountainous basins. J. Hydrometeorol. 15,
1778-1793. https://doi.org/10.1175/JHM-D-13-0194.1.

Mi, J. X., Li, A. D., & Zhou, L. F. (2020). Review study of interpretation methods
for future interpretable machine learning. IEEE Access, 8, 191969-191985.

Milewski, A., Elkadiri, R., Durham, M., 2015. Assessment and comparison of
TMPA sa tellite precipitation products in varying climatic and topographic
regimes in Morocco. Remote Sens. 7, 5697-5717.
https://doi.org/10.3390/rs70505697.

Miller, T., 2019. Explanation in artificial intelligence: insights from the social
sciences. Artif. Intell. 267, 1-38.
https://doi.org/10.1016/j.artint.2018.07.007.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.

Mousa, S. R., Bakhit, P. R., & Ishak, S. (2019). An extreme gradient boosting
method for identifying the factors contributing to crash/near-crash events: a
naturalistic driving study. Canadian Journal of Civil Engineering, 46(8),
712-721.

Mohammadi, B., Moazenzadeh, R., Christian, K., & Duan, Z. (2021). Improving
streamflow simulation by combining hydrological process-driven and
artificial intelligence-based models. Environmental Science and Pollution
Research, 28, 65752-65768.

87



Mueller, C. C., and E. H. Kidder (1972), Rain gage catch variations due to airflow
disturbances around a standard rain gage, Water Resour. Res., 8, 1077—
1082.

Musolf, A. M., Holzinger, E. R., Malley, J. D., & Bailey-Wilson, J. E. (2022).
What makes a good prediction? Feature importance and beginning to open
the black box of machine learning in genetics. Human Genetics, 141(9),
1515-1528.

Nabika, H., Itatani, M., & Lagzi, I. (2019). Pattern formation in precipitation
reactions: The Liesegang phenomenon. Langmuir, 36(2), 481-497.

Neff, E. L. (1977), How much rain does a rain gage gage? J. Hydrol., 35, 213-220.

Nespor, V., and B. Sevruk (1999), Estimation of wind-induced error of rainfall
gauge measurements using a numerical simulation, J. Atmos. Oceanic
Technol., 16, 450-464.

New, M., Todd, M., Hulme, M., & Jones, P. (2001). Precipitation measurements
and trends in the twentieth century. International Journal of Climatology: A
Journal of the Royal Meteorological Society, 21(15), 1889-1922.

Nguyen, H., Bui, X. N., Bui, H. B., & Cuong, D. T. (2019). Developing an
XGBoost model to predict blast-induced peak particle velocity in an open-
pit mine: a case study. Acta Geophysica, 67(2), 477-490.

Nicodemus, K. K., &Malley, J. D. (2009). Predictor correlation impacts machine
learning algorithms: implications for genomic
studies. Bioinformatics, 25(15), 1884-1890.

Nijssen, B., & Lettenmaier, D. P. (2004). Effect of precipitation sampling error on
simulated hydrological fluxes and states: Anticipating the Global
Precipitation Measurement satellites. Journal of geophysical research:
atmospheres, 109(D2).

88



Nohara, Y., Matsumoto, K., Soejima, H., & Nakashima, N. (2022). Explanation of
machine learning models using shapley additive explanation and application
for real data in hospital. Computer Methods and Programs in Biomedicine,
214, 106584.

Overeem, A., Leijnse, H., & Uijlenhoet, R. (2011). Measuring urban rainfall using
microwave links from commercial cellular communication networks. Water
Resources Research, 47(12).

Oyelade, O. N., Ezugwu, A. E. S., Mohamed, T. I., & Abualigah, L. (2022). Ebola
optimization search algorithm: A new nature-inspired metaheuristic
optimization algorithm. IEEE Access, 10, 16150-16177.

Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S., & Mohammadian, A. K.
(2020). Toward safer highways, application of XGBoost and SHAP for
real-time accident detection and feature analysis. Accident Analysis &
Prevention, 136, 105405.

Patakchi Yousefi, K., & Kollet, S. (2023). Deep learning of model-and reanalysis-
based precipitation and pressure mismatches over Europe. Frontiers in
Water, 5, 1178114,

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018 on arXiv.

Prakash, Satya, Ashis K. Mitra, Amir AghaKouchak, and D. S. Pai. "Error
characterization of TRMM Multisatellite Precipitation Analysis (TMPA-
3B42) products over India for different seasons.” Journal of Hydrology 529:
1302-1312 (2015).

89



Prakash, Satya, Ashis K. Mitra, D. S. Pai, and Amir AghaKouchak. "From TRMM
to GPM: How well can heavy rainfall be detected from space?.” Advances
in Water Resources 88: 1-7 (2016).

Qiu, H., Luo, L., Su, Z., Zhou, L., Wang, L., Chen, Y., 2020. Machine learning
approaches to predict peak demand days of cardiovascular admissions
considering environmental exposure. BMC Med. Inform. Decis. Mak. 20,
83. https://doi.org/ 10.1186/s12911-020-1101-8.

Rabinowicz, A., & Rosset, S. (2022). Tree-based models for correlated data.
Journal of Machine Learning Research, 23(258), 1-31.

Ramsauer, T., WeiB, T., & Marzahn, P. (2018). Comparison of the GPM IMERG
final precipitation product to RADOLAN weather radar data over the
topographically and climatically diverse Germany. Remote Sensing, 10(12),
2029.

Rasmy, M., Koike, T., & Li, X. (2014). Applicability of multi-frequency passive
microwave observations and data assimilation methods for improving
numerical weather forecasting in Niger, Africa. Remote Sensing, 6(6),
5306-5324.

Ren, J., Xu, G., Zhang, W., Leng, L., Xiao, Y., Wan, R., et al. (2021). Evaluation
and improvement of FY-4A AGRI quantitative precipitation estimation for
summer precipitation over complex topography of western China. Remote
Sens. 13 (21), 4366. d0i:10.3390/rs13214366.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust
you?" Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and
data mining (pp. 1135-1144).

Ridley, M. (2022). Explainable Artificial Intelligence (XAI): Adoption and
Advocacy. Information technology and libraries, 41(2).

90



Rinehart, R. E. (1983), Out-of-level instruments: Errors in hydrometeor spectra and
precipitation measurements, J. Clim. Appl. Meteorol., 22, 1404-1410.

Robinson, A. C., and J. C. Rodda (1969), Rain, wind and the aerodynamic
characteristics of rain-gauges, Meteorol. Mag., 98, 113-120.

Rong, G., Alu, S., Li, K., Su, Y., Zhang, J., Zhang, Y., et al. (2020). Rainfall
Induced Landslide Susceptibility Mapping Based on Bayesian Optimized
Random Forest and Gradient Boosting Decision Tree Models-A Case Study
of  Shuicheng  County, China. Water. 12 (11), 3066.
d0i:10.3390/w12113066.

Salih, A. M., Raisi-Estabragh, Z., Galazzo, 1. B., Radeva, P., Petersen, S. E.,
Lekadir, K., & Menegaz, G. (2024). A Perspective on Explainable Artificial
Intelligence Methods: SHAP and LIME. Advanced Intelligent Systems,
2400304.

Sam, Ee. N. M., Pradhan, B., and Lee, S. (2020). Application of Convolutional
Neural Networks Featuring Bayesian Optimization for Landslide
Susceptibility Assessment. Catena. 186 (6), 104249.

Saouabe, T., EI Khalki, E.M., Saidi, M.E.M., Najmi, A., Hadri, A., Rachidi, S., et
al., 2020. Evaluation of the GPM-IMERG precipitation product for flood
modeling in a semi- arid mountainous basin in Morocco. Water 12 (9),
2516.

Senocak, A. U. G., Yilmaz, M. T., Kalkan, S., Yucel, I., &Amjad, M. (2023). An
explainable two-stage machine learning approach for precipitation forecast.
Journal of Hydrology, 627, 130375.

Sensoy, S., 2004. The Mountains Influence On Turkey Climate Climate of Turkey
25-29.

Sensoy, S., Demircan, M., Ulupinar, U., & Balta, 1. (2008). Turkiye iklimi. Turkish
State Meteorological Service (DMI), Ankara.

91



Serafin, R. J., & Wilson, J. W. (2000). Operational weather radar in the United
States: Progress and opportunity. Bulletin of the American Meteorological
Society, 81(3), 501-518.

Setiawati, M.D., Miura, F., 2016. Evaluation of GSMaP daily rainfall satellite data
for f lood monitoring: case study—Kyushu Japan. J. Geosci. Environ.
Protection 04 (12), 101-117.

Shapley, L. S. (1953). A value for n-person games.

Sharifi, E., Steinacker, R., & Saghafian, B. (2016). Assessment of GPM-IMERG
and other precipitation products against gauge data under different
topographic and climatic conditions in Iran: Preliminary results. Remote
Sensing, 8(2), 135.

Shi, J., Yuan, F., Shi, C., Zhao, C., Zhang, L., Ren, L., et al., 2020. Statistical
Evaluation of the Latest GPM-Era IMERG and GSMaP Satellite
Precipitation Products in the Yellow River Source Region. Water 12 (4),
1006.

Shrikumar, A., Greenside, P., & Kundaje, A. (2017, July). Learning important
features through propagating activation differences. In International
conference on machine learning (pp. 3145-3153). PMIR.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

Sieck, L. C., Burges, S. J., & Steiner, M. (2007). Challenges in obtaining reliable
measurements of point rainfall. Water Resources Research, 43(1).

Stef, N., Basagaoglu, H., Chakraborty, D., & Jabeur, S. B. (2023). Does
institutional quality affect CO2 emissions? Evidence from explainable
artificial intelligence models. Energy Economics, 124, 106822.

92



Stisen, S., Hgjberg, A. L., Troldborg, L., Refsgaard, J. C., Christensen, B. S. B.,
Olsen, M., & Henriksen, H. J. (2012). On the importance of appropriate
precipitation gauge catch correction for hydrological modelling at mid to
high latitudes. Hydrology and Earth System Sciences, 16(11), 4157-4176.

Strumbelj, E., & Kononenko, I. (2014). Explaining prediction models and
individual predictions with feature contributions. Knowledge and
information systems, 41, 647-665.

Stuke, A., Rinke, P., and Todorovi¢, M. (2021). Efficient Hyperparameter Tuning
for Kernel ridge Regression with Bayesian Optimization. Mach. Learn. Sci.
Technol. 2, 035022. doi:10.1088/2632-2153/abee59

Su, F., Y. Hong, and D. P. Lettenmaier, 2008: Evaluation of TRMMMultisatellite
Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the
La Plata Basin. J. Hy drometeor., 9, 622—640, d0i:10.1175/2007JHM944.1.

Sushanth, K., Mishra, A., Mukhopadhyay, P., & Singh, R. (2023). Near-real-time
forecasting of reservoir inflows using explainable machine learning and
short-term weather forecasts. Stochastic Environmental Research and Risk
Assessment, 37(10), 3945-3965.

Sun, Q., et al., 2014. Variations in global temperature and precipitation for the
period of 1948 to 2010. Environ. Monit. Assess. 186 (9), 5663-5679.

Sun, Q., et al., 2018a. A review of global precipitation data sets: data sources,
estimation, and intercomparisons. Rev. Geophys. 56 (1), 79-107.

Tang, G., Clark, M.P., Papalexiou, S.M., Ma, Z., Hong, Y., 2020. Have satellite
precipitation products improved over last two decades? A comprehensive
comparison of GPM IMERG with nine satellite and reanalysis datasets.
Remote Sens. Environ. 240, 111697.

93



Tang, G., Ma, Y., Long, D., Zhong, L., and Hong, Y. (2015). Evaluation of GPM
Day-1 IMERG and TMPA Version-7 legacy products over Mainland China
at multiple spatiotemporal scales. J. Hydrology 533, 152-167.
doi:10.1016/j.jhydrol.2015.12.008.

Tang, L., Tian, Y., Yan, F., and Habib, E., “An improved procedure for the
validation of satellite-based precipitation estimates.” Atmospheric
Research, 163, 61-73 (2015b).

Tapiador, F. J., Navarro, A., Garcia-Ortega, E., Merino, A., Sanchez, J. L., Marcos,
C., & Kummerow, C. (2020). The contribution of rain gauges in the
calibration of the IMERG product: Results from the first validation over
Spain. Journal of Hydrometeorology, 21(2), 161-182.

Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., Garcia-Ortega, E., Machado,
L. A, .. & De Castro, M. (2012). Global precipitation measurement:
Methods, datasets and applications. Atmospheric Research, 104, 70-97.

Tesfagiorgis, K., Mahani, S. E., Krakauer, N. Y., & Khanbilvardi, R. (2011). Bias
correction of satellite rainfall estimates using a radar-gauge product-a case
study in Oklahoma (USA). Hydrology and Earth System Sciences, 15(8),
2631-2647.

Thiemig, V., R. Rojas, M. Zambrano-Bigiarini, and A. D. Roo, 2013: Hydrological
evaluation of satellite-based rainfall esti mates over the Volta and Baro-
Akobo basin. J. Hydrol., 499, 324-338, d0i:10.1016/j.jhydrol.2013.07.012.

Thouret, J. C., Enjolras, G., Martelli, K., Santoni, O., Luque, J. A., Nagata, M., ...
& Macedo, L. (2013). Combining criteria for delineating lahar-and flash-
flood-prone hazard and risk zones for the city of Arequipa, Peru. Natural
Hazards and Earth System Sciences, 13(2), 339-360.

Thornes J, Bloss W, Bouzarovski S, Cai X, Chapman L, Clark J, Dessai S, Du S,
van der Horst D, Kendall M, Kidd C, Randalls S. 2010. Communicating the
value of atmospheric services. Meteorological Applications 17: 243-250,
DOI: 10.1002/met.200

94



Tian, Y., & Peters-Lidard, C. D. (2010). A global map of uncertainties in
satellite-based precipitation measurements. Geophysical Research Letters,
37(24).

Tian, Y., Peters-Lidard, C.D., Eylander, J.B., Joyce, R.J., Huffman, G.J., Adler,
R.F., Hsu, K.L., Turk, F.J., Garcia, M. and Zeng, J., “Component analysis
of errors in satellite-based precipitation estimates.” Journal of Geophysical
Research: Atmospheres, 114 - D24 (2009).

Toros, H., Kahraman, A., Tilev-Tanriover, S., Geertsema, G., & Cats, G. (2018).
Simulating heavy precipitation with HARMONIE, HIRLAM and WRF-
ARW: a flash flood case study in Istanbul, Turkey. Avrupa Bilim ve
Teknoloji Dergisi, (13), 1-12.

Verma, B. P., Verma, V., & Badholia, A. (2022, July). Hyper-Tuned Ensemble
Machine Learning Model for Credit Card Fraud Detection. In 2022
International Conference on Inventive Computation Technologies (ICICT)
(pp. 320-327). IEEE.

Vila, D. A., De Goncalves, L. G. G., Toll, D. L., & Rozante, J. R. (2009).
Statistical evaluation of combined daily gauge observations and rainfall
satellite estimates over continental South America. Journal of
Hydrometeorology, 10(2), 533-543.

Ward, E., Buytaert, W., Peaver, L., Wheater, H., 2011. Evaluation of precipitation
products over complex mountainous terrain: A water resources perspective.
Adv. Water Resour. 34, 12221231

Wang, M., Li, Y., Yuan, H., Zhou, S., Wang, Y., Ikram, R. M. A, & Li, J. (2023).
An XGBoost-SHAP approach to quantifying morphological impact on
urban flooding susceptibility. Ecological Indicators, 156, 111137.

Wang, S., Luo, X., & Peng, Y. (2020). Spatial downscaling of MODIS land surface
temperature based on geographically weighted autoregressive model. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 13, 2532-2546.

95



Wang, S., Zhuang, J., Zheng, J., Fan, H., Kong, J., & Zhan, J. (2021). Application
of Bayesian hyperparameter optimized random forest and XGBoost model
for landslide susceptibility mapping. Frontiers in Earth Science, 9, 712240.

Wang, L., Zhou, J., Qi, J., Sun, L., Yang, K., Tian, L., et al., 2017. Development of
a land surface model with coupled snow and frozen soil physics. Water
Resour. Res. 53 (6), 5085-5103.

Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., Hou, A., 2017. Ground validation of
GPM IMERG and trmm 3B42V7 rainfall products over Southern Tibetan
plateau based on a high density rain gauge network. J. Geophys. Res. 122,
910-924. https://doi.org/10. 1002/2016JD025418.

Xue, X., Hong, Y., Limaye, A.S., Gourley, J.J., Huffman, G.J., Khan, S.1., et al.,
2013. Statistical and hydrological evaluation of TRMM-based Multi-
satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the
latest satellite precipitation products 3B42V7 ready for use in ungauged
basins? J. Hydrol. 499, 91-99.

Yang, Z., Hsu, K., Sorooshian, S., Xu, X., Braithwaite, D., & Verbist, K. M.
(2016). Bias adjustment of satellite-based precipitation estimation using
gauge observations: A case study in Chile. Journal of Geophysical
Research: Atmospheres, 121(8), 3790-3806.

Yang, Y., Wang, H., Chen, F., Zheng, X., Fu, Y., and Zhou, S. (2018). TRMM-
based optical and microphysical features of precipitating clouds in summer
over the yangtze-huaihe river valley, China. Pure Appl. Geophys. 176,
357-370. doi:10.1007/ s00024-018-1940-8.

Yilmaz, K. K., T. S. Hogue, K. L. Hsu, S. Sorooshian, H. V. Gupta, and T.
Wagener, 2005: Intercomparison of rain gauge, radar, and satellite-based
precipitation estimates with emphasis on hydrologicforecasting.
J.Hydrometeor., 6, 497-517, doi:10.1175/ JHM431.1.

Yong, B., Ren, L., Hong, Y., Wang, J., Gourley, J.J., Jiang, S., et al., 2010.
Hydrologic evaluation of Multisatellite Precipitation Analysis standard
precipitation products in basins beyond its inclined latitude band: A case
study in Laohahe basin, China. Water Resour. Res. 46 (7).

96



Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2015). Understanding
neural networks through deep visualization. arXiv  preprint
arXiv:1506.06579.

Yu, C., Hu, D., Liu, M., Wang, S., Di, Y., 2020. Spatio-temporal accuracy
evaluation of three high-resolution satellite precipitation products in China
area. Atmos. Res. 241, 104952.

Yu, L., Zhang, Y., Yang, Y., 2020. Using high-density rain gauges to validate the
accuracy of satellite precipitation products over complex terrains.
Atmosphere (Basel). 11, 633.

Yucel, I. (2015). Assessment of a flash flood event using different precipitation
datasets. Natural Hazards, 79, 1889-1911.

Yucel, 1., Kuligowski, R. J., & Gochis, D. J. (2011). Evaluating the hydro-estimator
satellite rainfall algorithm over a mountainous region. International journal
of remote sensing, 32(22), 7315-7342.

Yucel, I., & Onen, A. (2014). Evaluating a mesoscale atmosphere model and a
satellite-based algorithm in estimating extreme rainfall events in
northwestern Turkey. Natural Hazards and Earth System Sciences, 14(3),
611-624.

Zeng, Z., Chen, H., Shi, Q., & Li, J. (2021). Spatial downscaling of IMERG
considering vegetation index based on adaptive lag phase. IEEE
Transactions on Geoscience and Remote Sensing, 60, 1-15.

Zeng, Q., Chen, H., Xu, C., Jie, M., Chen, J., Guo, S., et al., 2018b. The effect of
rain gauge density and distribution on runoff simulation using a lumped
hydrological modelling approach. J. Hydrol. 563, 106-122.

97



Zeng, Q., et al.,, 2018. Inter-comparison and evaluation of remote sensing
precipitation products over China from 2005 to 2013. Remote Sens. 10 (2),
168.

Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven

design for fault detection of wind turbines using random forests and
XGboost. leee Access, 6, 21020-21031.

Zhang, L., Chen, X., Lai, R., Zhu, Z., 2022. Performance of satellite-based and

reanalysis precipitation products under multi-temporal scales and extreme
weather in mainland China. J. Hydrol. 605, 127389.

Zhang, L., Li, X., Zheng, D., Zhang, K., Ma, Q., Zhao, Y., & Ge, Y. (2021).
Merging multiple satellite-based precipitation products and gauge

observations using a novel double machine learning approach. Journal of
Hydrology, 594, 1259609.

Zhang, S., Wang, D., Qin, Z., Zheng, Y., Guo, J., 2018. Assessment of the GPM
and TRMM precipitation products using the rain gauge network over the
Tibetan

Plateau. J. Meteorol. Res. 32, 324-336.
https://doi.org/10.1007/s13351-018-7067-0.

Zhao, Z., Anand, R., & Wang, M. (2019, October). Maximum relevance and
minimum redundancy feature selection methods for a marketing machine

learning platform. In 2019 IEEE international conference on data science
and advanced analytics (DSAA) (pp. 442-452). IEEE.

Zheng, X., Yang, Y., Yuan, Y., Cao, Y. n., and Gao, J. (2021). Comparison of
macro and microphysical properties in precipitating and non-precipitating

clouds over central-eastern China during warm season. Remote Sens. 14,
152. doi:10.3390/ rs14010152.

Zhong, J., Sun, Y., Peng, W., Xie, M., Yang, J., & Tang, X. (2018). XGBFEMF: an
XGBoost-based framework for essential protein prediction. IEEE
transactions on nanobioscience, 17(3), 243-250.

98



Zhou, L., Koike, T., Takeuchi, K., Rasmy, M., Onuma, K., Ito, H., ... & Ao, T.
(2022). A study on availability of ground observations and its impacts on

bias correction of satellite precipitation products and hydrologic simulation
efficiency. Journal of Hydrology, 610, 127595.

Zhu, H., Liu, H., Zhou, Q., & Cui, A. (2023). A XGBoost-based downscaling-

calibration scheme for extreme precipitation events. IEEE Transactions on
Geoscience and Remote Sensing.

Zhu, X., et al., 2015. Comparison of monthly precipitation derived from high-
resolution gridded datasets in arid Xinjiang, central Asia. Quat. Int. 358,
160-170.

99






APPENDICES

A. Appendix: SHAP feature importance scores as heatmap for Random
Forest and XGBoost between 2015-2022
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